Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models

    Mahmood A. Mahmood1,2,*, Khalaf Alsalem1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3431-3448, 2024, DOI:10.32604/cmc.2024.047604 - 26 March 2024

    Abstract Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is… More >

  • Open Access

    ARTICLE

    Ethical Decision-Making Framework Based on Incremental ILP Considering Conflicts

    Xuemin Wang, Qiaochen Li, Xuguang Bao*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3619-3643, 2024, DOI:10.32604/cmc.2024.047586 - 26 March 2024

    Abstract Humans are experiencing the inclusion of artificial agents in their lives, such as unmanned vehicles, service robots, voice assistants, and intelligent medical care. If the artificial agents cannot align with social values or make ethical decisions, they may not meet the expectations of humans. Traditionally, an ethical decision-making framework is constructed by rule-based or statistical approaches. In this paper, we propose an ethical decision-making framework based on incremental ILP (Inductive Logic Programming), which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches. As the current incremental ILP makes it difficult to… More >

  • Open Access

    ARTICLE

    Data Secure Storage Mechanism for IIoT Based on Blockchain

    Jin Wang1,2, Guoshu Huang1, R. Simon Sherratt3, Ding Huang4, Jia Ni4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4029-4048, 2024, DOI:10.32604/cmc.2024.047468 - 26 March 2024

    Abstract With the development of Industry 4.0 and big data technology, the Industrial Internet of Things (IIoT) is hampered by inherent issues such as privacy, security, and fault tolerance, which pose certain challenges to the rapid development of IIoT. Blockchain technology has immutability, decentralization, and autonomy, which can greatly improve the inherent defects of the IIoT. In the traditional blockchain, data is stored in a Merkle tree. As data continues to grow, the scale of proofs used to validate it grows, threatening the efficiency, security, and reliability of blockchain-based IIoT. Accordingly, this paper first analyzes the… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407 - 26 March 2024

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336 - 26 March 2024

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion More >

  • Open Access

    ARTICLE

    Path Planning for AUVs Based on Improved APF-AC Algorithm

    Guojun Chen*, Danguo Cheng, Wei Chen, Xue Yang, Tiezheng Guo

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3721-3741, 2024, DOI:10.32604/cmc.2024.047325 - 26 March 2024

    Abstract With the increase in ocean exploration activities and underwater development, the autonomous underwater vehicle (AUV) has been widely used as a type of underwater automation equipment in the detection of underwater environments. However, nowadays AUVs generally have drawbacks such as weak endurance, low intelligence, and poor detection ability. The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks. To improve the underwater operation ability of the AUV, this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm. In response to… More >

  • Open Access

    ARTICLE

    RoBGP: A Chinese Nested Biomedical Named Entity Recognition Model Based on RoBERTa and Global Pointer

    Xiaohui Cui1,2,#, Chao Song1,2,#, Dongmei Li1,2,*, Xiaolong Qu1,2, Jiao Long1,2, Yu Yang1,2, Hanchao Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3603-3618, 2024, DOI:10.32604/cmc.2024.047321 - 26 March 2024

    Abstract Named Entity Recognition (NER) stands as a fundamental task within the field of biomedical text mining, aiming to extract specific types of entities such as genes, proteins, and diseases from complex biomedical texts and categorize them into predefined entity types. This process can provide basic support for the automatic construction of knowledge bases. In contrast to general texts, biomedical texts frequently contain numerous nested entities and local dependencies among these entities, presenting significant challenges to prevailing NER models. To address these issues, we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer… More >

  • Open Access

    ARTICLE

    Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications

    Bhawna Goyal1, Ayush Dogra2, Dawa Chyophel Lepcha1, Rajesh Singh3, Hemant Sharma4, Ahmed Alkhayyat5, Manob Jyoti Saikia6,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4317-4342, 2024, DOI:10.32604/cmc.2024.047256 - 26 March 2024

    Abstract Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis. It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases. However, recent image fusion techniques have encountered several challenges, including fusion artifacts, algorithm complexity, and high computing costs. To solve these problems, this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance. First,… More >

  • Open Access

    REVIEW

    A Review of Computing with Spiking Neural Networks

    Jiadong Wu, Yinan Wang*, Zhiwei Li*, Lun Lu, Qingjiang Li

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2909-2939, 2024, DOI:10.32604/cmc.2024.047240 - 26 March 2024

    Abstract Artificial neural networks (ANNs) have led to landmark changes in many fields, but they still differ significantly from the mechanisms of real biological neural networks and face problems such as high computing costs, excessive computing power, and so on. Spiking neural networks (SNNs) provide a new approach combined with brain-like science to improve the computational energy efficiency, computational architecture, and biological credibility of current deep learning applications. In the early stage of development, its poor performance hindered the application of SNNs in real-world scenarios. In recent years, SNNs have made great progress in computational performance… More >

  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211 - 26 March 2024

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph More >

Displaying 6701-6710 on page 671 of 31561. Per Page