Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Deployment Strategy for Multiple Controllers Based on the Aviation On-Board Software-Defined Data Link Network

    Yuting Zhu1, Yanfang Fu2,*, Yang Ce3, Pan Deng1, Jianpeng Zhu1, Huankun Su1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3867-3894, 2023, DOI:10.32604/cmc.2023.046772 - 26 December 2023

    Abstract In light of the escalating demand and intricacy of services in contemporary terrestrial, maritime, and aerial combat operations, there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks. Software-Defined Networking (SDN) proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts, due to its intrinsic ability to flexibly allocate and centrally administer network resources. This study pivots around the optimization of SDN controller deployment within airborne data link clusters. A collaborative multi-controller architecture predicated on airborne data… More >

  • Open Access

    ARTICLE

    Hybrid Algorithm-Driven Smart Logistics Optimization in IoT-Based Cyber-Physical Systems

    Abdulwahab Ali Almazroi1,*, Nasir Ayub2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3921-3942, 2023, DOI:10.32604/cmc.2023.046602 - 26 December 2023

    Abstract Effectively managing complex logistics data is essential for development sustainability and growth, especially in optimizing distribution routes. This article addresses the limitations of current logistics path optimization methods, such as inefficiencies and high operational costs. To overcome these drawbacks, we introduce the Hybrid Firefly-Spotted Hyena Optimization (HFSHO) algorithm, a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm (FO) with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm (SHO). HFSHO aims to improve logistics path optimization and reduce operational costs. The algorithm’s effectiveness is systematically… More >

  • Open Access

    ARTICLE

    Infrared Small Target Detection Algorithm Based on ISTD-CenterNet

    Ning Li*, Shucai Huang, Daozhi Wei

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3511-3531, 2023, DOI:10.32604/cmc.2023.045987 - 26 December 2023

    Abstract This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet (ISTD-CenterNet) network for detecting small infrared targets in complex environments. The method eliminates the need for an anchor frame, addressing the issues of low accuracy and slow speed. HRNet is used as the framework for feature extraction, and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects. A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire… More >

  • Open Access

    ARTICLE

    FPGA Optimized Accelerator of DCNN with Fast Data Readout and Multiplier Sharing Strategy

    Tuo Ma, Zhiwei Li, Qingjiang Li*, Haijun Liu, Zhongjin Zhao, Yinan Wang

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3237-3263, 2023, DOI:10.32604/cmc.2023.045948 - 26 December 2023

    Abstract With the continuous development of deep learning, Deep Convolutional Neural Network (DCNN) has attracted wide attention in the industry due to its high accuracy in image classification. Compared with other DCNN hardware deployment platforms, Field Programmable Gate Array (FPGA) has the advantages of being programmable, low power consumption, parallelism, and low cost. However, the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator. The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing, but this method’s… More >

  • Open Access

    ARTICLE

    Asymmetric Loss Based on Image Properties for Deep Learning-Based Image Restoration

    Linlin Zhu, Yu Han, Xiaoqi Xi, Zhicun Zhang, Mengnan Liu, Lei Li, Siyu Tan, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3367-3386, 2023, DOI:10.32604/cmc.2023.045878 - 26 December 2023

    Abstract Deep learning techniques have significantly improved image restoration tasks in recent years. As a crucial component of deep learning, the loss function plays a key role in network optimization and performance enhancement. However, the currently prevalent loss functions assign equal weight to each pixel point during loss calculation, which hampers the ability to reflect the roles of different pixel points and fails to exploit the image’s characteristics fully. To address this issue, this study proposes an asymmetric loss function based on the image and data characteristics of the image recovery task. This novel loss function… More >

  • Open Access

    ARTICLE

    Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network for Visible-Infrared Person Re-Identification

    Zheng Shi, Wanru Song*, Junhao Shan, Feng Liu

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3467-3488, 2023, DOI:10.32604/cmc.2023.045849 - 26 December 2023

    Abstract Visible-infrared Cross-modality Person Re-identification (VI-ReID) is a critical technology in smart public facilities such as cities, campuses and libraries. It aims to match pedestrians in visible light and infrared images for video surveillance, which poses a challenge in exploring cross-modal shared information accurately and efficiently. Therefore, multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes. However, existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks, the fusion module. This paper introduces a novel network called the… More >

  • Open Access

    ARTICLE

    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2677-2697, 2023, DOI:10.32604/cmc.2023.045818 - 26 December 2023

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis with DDCNN Based on Intelligent Feature Fusion Strategy in Strong Noise

    Chaoqian He1,2, Runfang Hao1,2,*, Kun Yang1,2, Zhongyun Yuan1,2, Shengbo Sang1,2, Xiaorui Wang1,2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3423-3442, 2023, DOI:10.32604/cmc.2023.045718 - 26 December 2023

    Abstract Intelligent fault diagnosis in modern mechanical equipment maintenance is increasingly adopting deep learning technology. However, conventional bearing fault diagnosis models often suffer from low accuracy and unstable performance in noisy environments due to their reliance on a single input data. Therefore, this paper proposes a dual-channel convolutional neural network (DDCNN) model that leverages dual data inputs. The DDCNN model introduces two key improvements. Firstly, one of the channels substitutes its convolution with a larger kernel, simplifying the structure while addressing the lack of global information and shallow features. Secondly, the feature layer combines data from More >

  • Open Access

    ARTICLE

    Maximizing Influence in Temporal Social Networks: A Node Feature-Aware Voting Algorithm

    Wenlong Zhu1,2,*, Yu Miao1, Shuangshuang Yang3, Zuozheng Lian1,2, Lianhe Cui1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3095-3117, 2023, DOI:10.32604/cmc.2023.045646 - 26 December 2023

    Abstract Influence Maximization (IM) aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes. However, most existing studies on the IM problem focus on static social network features, while neglecting the features of temporal social networks. To bridge this gap, we focus on node features reflected by their historical interaction behavior in temporal social networks, i.e., interaction attributes and self-similarity, and incorporate them into the influence maximization algorithm and information propagation model. Firstly, we propose… More >

  • Open Access

    ARTICLE

    An Adaptive DDoS Detection and Classification Method in Blockchain Using an Integrated Multi-Models

    Xiulai Li1,2,3,4, Jieren Cheng1,3,*, Chengchun Ruan1,3, Bin Zhang1,3, Xiangyan Tang1,3, Mengzhe Sun5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3265-3288, 2023, DOI:10.32604/cmc.2023.045588 - 26 December 2023

    Abstract With the rising adoption of blockchain technology due to its decentralized, secure, and transparent features, ensuring its resilience against network threats, especially Distributed Denial of Service (DDoS) attacks, is crucial. This research addresses the vulnerability of blockchain systems to DDoS assaults, which undermine their core decentralized characteristics, posing threats to their security and reliability. We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks. To ensure the robustness and validity of our approach, a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset. Using this, our… More >

Displaying 7821-7830 on page 783 of 31561. Per Page