Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    A Deep Learning Based Sentiment Analytic Model for the Prediction of Traffic Accidents

    Nadeem Malik1,*, Saud Altaf1, Muhammad Usman Tariq2, Ashir Ahmed3, Muhammad Babar4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1599-1615, 2023, DOI:10.32604/cmc.2023.040455 - 29 November 2023

    Abstract The severity of traffic accidents is a serious global concern, particularly in developing nations. Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents. There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter, blogs and Facebook. Although such approaches are popular, there exists an issue of data management and low prediction accuracy. This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory (XLNet-Bi-LSTM) to predict traffic collisions More >

  • Open Access

    ARTICLE

    VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity

    Junqiang Jiang1,2, Zhifang Sun1, Xiong Jiang1, Shengjie Jin1, Yinli Jiang3, Bo Fan1,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1617-1644, 2023, DOI:10.32604/cmc.2023.041973 - 29 November 2023

    Abstract The grey wolf optimizer (GWO) is a swarm-based intelligence optimization algorithm by simulating the steps of searching, encircling, and attacking prey in the process of wolf hunting. Along with its advantages of simple principle and few parameters setting, GWO bears drawbacks such as low solution accuracy and slow convergence speed. A few recent advanced GWOs are proposed to try to overcome these disadvantages. However, they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence. To solve the abovementioned issues, a high-accuracy variable grey wolf optimizer… More >

  • Open Access

    ARTICLE

    Digital Image Encryption Algorithm Based on Double Chaotic Map and LSTM

    Luoyin Feng1,*, Jize Du2, Chong Fu1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1645-1662, 2023, DOI:10.32604/cmc.2023.042630 - 29 November 2023

    Abstract In the era of network communication, digital image encryption (DIE) technology is critical to ensure the security of image data. However, there has been limited research on combining deep learning neural networks with chaotic mapping for the encryption of digital images. So, this paper addresses this gap by studying the generation of pseudo-random sequences (PRS) chaotic signals using dual logistic chaotic maps. These signals are then predicted using long and short-term memory (LSTM) networks, resulting in the reconstruction of a new chaotic signal. During the research process, it was discovered that there are numerous training… More >

  • Open Access

    ARTICLE

    BLECA: A Blockchain-Based Lightweight and Efficient Cross-Domain Authentication Scheme for Smart Parks

    Fengting Luo, Ruwei Huang*, Yuyue Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1815-1835, 2023, DOI:10.32604/cmc.2023.041676 - 29 November 2023

    Abstract Smart parks serve as integral components of smart cities, where they play a pivotal role in the process of urban modernization. The demand for cross-domain cooperation among smart devices from various parks has witnessed a significant increase. To ensure secure communication, device identities must undergo authentication. The existing cross-domain authentication schemes face issues such as complex authentication paths and high certificate management costs for devices, making it impractical for resource-constrained devices. This paper proposes a blockchain-based lightweight and efficient cross-domain authentication protocol for smart parks, which simplifies the authentication interaction and requires every device to More >

  • Open Access

    ARTICLE

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

    Jiefeng Wang1, Eddie Yin Kwee Ng2,*, Jianwu Li1, Yanhao Cao1, Yanan Huang1, Liang Li1,2,3,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 1-31, 2023, DOI:10.32604/fhmt.2023.045510 - 30 November 2023

    Abstract The flow structure of the vortex cooling is asymmetrical compared to the traditional gas turbine leading edge cooling, such as the impingement cooling and the axial flow cooling. This asymmetrical property will affect the cooling performance in the blade leading edge, whereas such effects are not found in most of the studies on vortex cooling due to the neglect of the mainstream flow in the airfoil channel. This study involves the mainstream flow field and the rotational effects based on the profile of the GE E3 blade to reveal the mechanism of the asymmetrical flow structure… More > Graphic Abstract

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

  • Open Access

    ARTICLE

    Study of Double Diffusivity and Heat Conducting Phenomena under the Casson Nanofluid Flowing through a Vertical Peristaltic Tube

    Azad Hussain1,*, Naila Farooq1, Ayesha Saddiqa1, Ahmad M. Hassan2, Abdulkafi Mohammed Saeed3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 563-590, 2023, DOI:10.32604/fhmt.2023.042818 - 30 November 2023

    Abstract The current article discusses the peristaltic flow of the Casson fluid model with implications for double diffusivity, radiative flux, variable conductivity and viscosity. This study offers a thorough understanding of the functioning and illnesses of embryological organs, renal systems, respiratory tracts, etc., that may be useful to medical professionals and researchers. The main purpose of the study is to evaluate the consequences of double diffusivity on the peristaltic flow of nanofluid. By implementing the appropriate transformation, the governed differential equations of momentum, temperature, concentration and double diffusivity are worked out numerically. The lowest Reynolds number… More >

  • Open Access

    ARTICLE

    Analysis of Profile and Unsteady Flow Performance of Variable Base Circle Radius Scroll Expander

    Junying Wei*, Gang Li, Chenrui Zhang, Wenwen Chang, Jidai Wang

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 199-214, 2023, DOI:10.32604/fhmt.2023.041793 - 30 November 2023

    Abstract To study the complex internal flow field variation and output characteristics of a variable base radius scroll expander, this paper uses dynamic mesh techniques and computational fluid dynamics (CFD) methods to perform transient numerical simulations of a variable base radius scroll expander. Analysis of the flow field in the working cavity of a variable base radius scroll expander at different spindle angles and the effect of different profiles, speeds and pressures on the output characteristics of the scroll expander. The results of the study show that due to the periodic blocking of the inlet by… More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539 - 30 November 2023

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are More >

  • Open Access

    ARTICLE

    Numerical Calculation of Transient Thermal Characteristics of Nozzle Flowmeter

    Xin Li1, Shaohan Zheng1,2, Yuliang Zhang1,*, Minfeng Lv3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 245-264, 2023, DOI:10.32604/fhmt.2023.041778 - 30 November 2023

    Abstract This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures. Based on finite element method, the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted. The research shows that: as the fluid passes through the flowmeter, the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet, as well as the pressure tapping points upstream and downstream; High thermal stress zones are present More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009 - 30 November 2023

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into… More >

Displaying 8001-8010 on page 801 of 31561. Per Page