Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture
R. Punithavathi1, A. Delphin Carolina Rani2, K. R. Sughashini3, Chinnarao Kurangi4, M. Nirmala5, Hasmath Farhana Thariq Ahmed6, S. P. Balamurugan7,*
Computer Systems Science and Engineering, Vol.44, No.3, pp. 2759-2774, 2023, DOI:10.32604/csse.2023.027647
- 01 August 2022
Abstract Presently, precision agriculture processes like plant disease, crop yield prediction, species recognition, weed detection, and irrigation can be accomplished by the use of computer vision (CV) approaches. Weed plays a vital role in influencing crop productivity. The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased. Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity, this study presents a novel computer vision and deep learning based weed detection and classification (CVDL-WDC) model for precision agriculture. The proposed CVDL-WDC technique More >