Home / Journals / CSSE / Vol.46, No.2, 2023
Special Issues
  • Open AccessOpen Access

    ARTICLE

    Sensor Network Structure Recognition Based on P-law

    Chuiju You1, Guanjun Lin1,*, Jinming Qiu1, Ning Cao1, Yundong Sun2, Russell Higgs3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1277-1292, 2023, DOI:10.32604/csse.2023.026150
    Abstract A sensor graph network is a sensor network model organized according to graph network structure. Structural unit and signal propagation of core nodes are the basic characteristics of sensor graph networks. In sensor networks, network structure recognition is the basis for accurate identification and effective prediction and control of node states. Aiming at the problems of difficult global structure identification and poor interpretability in complex sensor graph networks, based on the characteristics of sensor networks, a method is proposed to firstly unitize the graph network structure and then expand the unit based on the signal More >

  • Open AccessOpen Access

    ARTICLE

    Artificial Algae Optimization with Deep Belief Network Enabled Ransomware Detection in IoT Environment

    Mesfer Al Duhayyim1,*, Heba G. Mohamed2, Fadwa Alrowais3, Fahd N. Al-Wesabi4, Anwer Mustafa Hilal5, Abdelwahed Motwakel5
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1293-1310, 2023, DOI:10.32604/csse.2023.035589
    Abstract The Internet of Things (IoT) has gained more popularity in research because of its large-scale challenges and implementation. But security was the main concern when witnessing the fast development in its applications and size. It was a dreary task to independently set security systems in every IoT gadget and upgrade them according to the newer threats. Additionally, machine learning (ML) techniques optimally use a colossal volume of data generated by IoT devices. Deep Learning (DL) related systems were modelled for attack detection in IoT. But the current security systems address restricted attacks and can be… More >

  • Open AccessOpen Access

    ARTICLE

    BS-SC Model: A Novel Method for Predicting Child Abuse Using Borderline-SMOTE Enabled Stacking Classifier

    Saravanan Parthasarathy, Arun Raj Lakshminarayanan*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1311-1336, 2023, DOI:10.32604/csse.2023.034910
    Abstract For a long time, legal entities have developed and used crime prediction methodologies. The techniques are frequently updated based on crime evaluations and responses from scientific communities. There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level. Child maltreatment is not adequately addressed because children are voiceless. As a result, the possibility of developing a model for predicting child abuse was investigated in this study. Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events. The data set was… More >

  • Open AccessOpen Access

    ARTICLE

    Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm

    José Escorcia-Gutierrez1,*, Roosvel Soto-Diaz2, Natasha Madera3, Carlos Soto3, Francisco Burgos-Florez2, Alexander Rodríguez4, Romany F. Mansour5
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1337-1353, 2023, DOI:10.32604/csse.2023.035253
    Abstract Computer-aided diagnosis (CAD) models exploit artificial intelligence (AI) for chest X-ray (CXR) examination to identify the presence of tuberculosis (TB) and can improve the feasibility and performance of CXR for TB screening and triage. At the same time, CXR interpretation is a time-consuming and subjective process. Furthermore, high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis. Therefore, computer-aided diagnosis (CAD) models using machine learning (ML) and deep learning (DL) can be designed for screening TB accurately. With this motivation, this article develops a Water Strider Optimization with Deep… More >

  • Open AccessOpen Access

    ARTICLE

    Enhanced Adaptive Brain-Computer Interface Approach for Intelligent Assistance to Disabled Peoples

    Ali Usman1, Javed Ferzund1, Ahmad Shaf1, Muhammad Aamir1, Samar Alqhtani2,*, Khlood M. Mehdar3, Hanan Talal Halawani4, Hassan A. Alshamrani5, Abdullah A. Asiri5, Muhammad Irfan6
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1355-1369, 2023, DOI:10.32604/csse.2023.034682
    Abstract Assistive devices for disabled people with the help of Brain-Computer Interaction (BCI) technology are becoming vital bio-medical engineering. People with physical disabilities need some assistive devices to perform their daily tasks. In these devices, higher latency factors need to be addressed appropriately. Therefore, the main goal of this research is to implement a real-time BCI architecture with minimum latency for command actuation. The proposed architecture is capable to communicate between different modules of the system by adopting an automotive, intelligent data processing and classification approach. Neuro-sky mind wave device has been used to transfer the… More >

  • Open AccessOpen Access

    ARTICLE

    Improved Chameleon Swarm Optimization-Based Load Scheduling for IoT-Enabled Cloud Environment

    Manar Ahmed Hamza1,*, Shaha Al-Otaibi2, Sami Althahabi3, Jaber S. Alzahrani4, Abdullah Mohamed5, Abdelwahed Motwakel1, Abu Sarwar Zamani1, Mohamed I. Eldesouki6
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1371-1383, 2023, DOI:10.32604/csse.2023.030232
    Abstract Internet of things (IoT) and cloud computing (CC) becomes widespread in different application domains such as business, e-commerce, healthcare, etc. The recent developments of IoT technology have led to an increase in large amounts of data from various sources. In IoT enabled cloud environment, load scheduling remains a challenging process which is applied for ensuring network stability with maximum resource utilization. The load scheduling problem was regarded as an optimization problem that is solved by metaheuristics. In this view, this study develops a new Circle Chaotic Chameleon Swarm Optimization based Load Scheduling (C3SOA-LS) technique for… More >

  • Open AccessOpen Access

    ARTICLE

    Contrastive Clustering for Unsupervised Recognition of Interference Signals

    Xiangwei Chen1, Zhijin Zhao1,2,*, Xueyi Ye1, Shilian Zheng2, Caiyi Lou2, Xiaoniu Yang2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1385-1400, 2023, DOI:10.32604/csse.2023.034543
    Abstract Interference signals recognition plays an important role in anti-jamming communication. With the development of deep learning, many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms. However, there is no unsupervised interference signals recognition algorithm at present. In this paper, an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering (DDCC) is proposed. Specifically, in the first phase, four data augmentation strategies for interference signals are used in data-augmentation-based (DA-based) contrastive learning. In the second phase, the original dataset’s k-nearest… More >

  • Open AccessOpen Access

    ARTICLE

    ViT2CMH: Vision Transformer Cross-Modal Hashing for Fine-Grained Vision-Text Retrieval

    Mingyong Li, Qiqi Li, Zheng Jiang, Yan Ma*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1401-1414, 2023, DOI:10.32604/csse.2023.034757
    Abstract In recent years, the development of deep learning has further improved hash retrieval technology. Most of the existing hashing methods currently use Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to process image and text information, respectively. This makes images or texts subject to local constraints, and inherent label matching cannot capture fine-grained information, often leading to suboptimal results. Driven by the development of the transformer model, we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs. Specifically, we use a More >

  • Open AccessOpen Access

    ARTICLE

    Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model

    R. Sheeba1,*, R. Sharmila2, Ahmed Alkhayyat3, Rami Q. Malik4
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1415-1429, 2023, DOI:10.32604/csse.2023.034321
    Abstract Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices.… More >

  • Open AccessOpen Access

    ARTICLE

    Enhanced Metaheuristics with Trust Aware Route Selection for Wireless Sensor Networks

    A. Francis Saviour Devaraj1, T. Satyanarayana Murthy2, Fayadh Alenezi3, E. Laxmi Lydia4, Mohamad Adzhar Md Zawawi5, Mohamad Khairi Ishak5,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1431-1445, 2023, DOI:10.32604/csse.2023.034421
    Abstract Recently, a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks (WSN). In routing, the trust system includes or avoids nodes related to the estimated trust values in the routing function. This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol (EMTA-SRSP) for WSN. The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN. To accomplish this, the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication. For the clustering process, the nodes with maximum More >

  • Open AccessOpen Access

    ARTICLE

    Adaptive Weighted Flow Net Algorithm for Human Activity Recognition Using Depth Learned Features

    G. Augusta Kani*, P. Geetha
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1447-1469, 2023, DOI:10.32604/csse.2023.035969
    Abstract Human Activity Recognition (HAR) from video data collections is the core application in vision tasks and has a variety of utilizations including object detection applications, video-based behavior monitoring, video classification, and indexing, patient monitoring, robotics, and behavior analysis. Although many techniques are available for HAR in video analysis tasks, most of them are not focusing on behavioral analysis. Hence, a new HAR system analysis the behavioral activity of a person based on the deep learning approach proposed in this work. The most essential aim of this work is to recognize the complex activities that are… More >

  • Open AccessOpen Access

    ARTICLE

    Modified Garden Balsan Optimization Based Machine Learning for Intrusion Detection

    Mesfer Al Duhayyim1,*, Jaber S. Alzahrani2, Hanan Abdullah Mengash3, Mrim M. Alnfiai4, Radwa Marzouk3, Gouse Pasha Mohammed5, Mohammed Rizwanullah5, Amgad Atta Abdelmageed5
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1471-1485, 2023, DOI:10.32604/csse.2023.034137
    Abstract The Internet of Things (IoT) environment plays a crucial role in the design of smart environments. Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments. Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications. Intrusion detection systems (IDS) can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities. This paper introduces a modified garden balsan optimization-based machine learning model for intrusion detection (MGBO-MLID) in the IoT cloud environment. The presented MGBO-MLID technique focuses on the identification and… More >

  • Open AccessOpen Access

    ARTICLE

    Identification of Key Links in Electric Power Operation Based-Spatiotemporal Mixing Convolution Neural Network

    Lei Feng1, Bo Wang1,*, Fuqi Ma1, Hengrui Ma2, Mohamed A. Mohamed3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1487-1501, 2023, DOI:10.32604/csse.2023.035377
    Abstract As the scale of the power system continues to expand, the environment for power operations becomes more and more complex. Existing risk management and control methods for power operations can only set the same risk detection standard and conduct the risk detection for any scenario indiscriminately. Therefore, more reliable and accurate security control methods are urgently needed. In order to improve the accuracy and reliability of the operation risk management and control method, this paper proposes a method for identifying the key links in the whole process of electric power operation based on the spatiotemporal… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Learning-Based FOPID Controller for Cascaded DC-DC Converters

    S. Hema1,*, Y. Sukhi2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1503-1519, 2023, DOI:10.32604/csse.2023.036577
    Abstract Smart grids and their technologies transform the traditional electric grids to assure safe, secure, cost-effective, and reliable power transmission. Non-linear phenomena in power systems, such as voltage collapse and oscillatory phenomena, can be investigated by chaos theory. Recently, renewable energy resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been widely used for electric power generation. The design of the controller for the direct Current (DC) converter in a PV system is performed based on the linearized model at an appropriate operating point. However, these operating points are ever-changing in a PV system,… More >

  • Open AccessOpen Access

    ARTICLE

    Diagnosis of Middle Ear Diseases Based on Convolutional Neural Network

    Yunyoung Nam1, Seong Jun Choi2, Jihwan Shin1, Jinseok Lee3,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1521-1532, 2023, DOI:10.32604/csse.2023.034192
    Abstract An otoscope is traditionally used to examine the eardrum and ear canal. A diagnosis of otitis media (OM) relies on the experience of clinicians. If an examiner lacks experience, the examination may be difficult and time-consuming. This paper presents an ear disease classification method using middle ear images based on a convolutional neural network (CNN). Especially the segmentation and classification networks are used to classify an otoscopic image into six classes: normal, acute otitis media (AOM), otitis media with effusion (OME), chronic otitis media (COM), congenital cholesteatoma (CC) and traumatic perforations (TMPs). The Mask R-CNN More >

  • Open AccessOpen Access

    ARTICLE

    Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana Murthy3, Padmakar Maddala4, E. Laxmi Lydia5, Seifedine Kadry6,7,8,*, Jungeun Kim9
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1533-1547, 2023, DOI:10.32604/csse.2023.036296
    Abstract Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield. Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns. Weed control has become one of the significant problems in the agricultural sector. In traditional weed control, the entire field is treated uniformly by spraying the soil, a single herbicide dose, weed, and crops in the same way. For more precise farming, robots could accomplish targeted weed treatment if they could specifically find the location of the… More >

  • Open AccessOpen Access

    ARTICLE

    Optimized Tuning of LOADng Routing Protocol Parameters for IoT

    Divya Sharma1,*, Sanjay Jain2, Vivek Maik3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1549-1561, 2023, DOI:10.32604/csse.2023.035031
    Abstract Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things (IoT), making it possible to accomplish tasks with less human interaction. However, it faces many problems, including lower capacity links, energy utilization, enhancement of resources and limited resources due to its openness, heterogeneity, limited resources and extensiveness. It is challenging to route packets in such a constrained environment. In an IoT network constrained by limited resources, minimal routing control overhead is required without packet loss. Such constrained environments can be improved through the optimal routing protocol. It is challenging to route… More >

  • Open AccessOpen Access

    ARTICLE

    An Improved Steganographic Scheme Using the Contour Principle to Ensure the Privacy of Medical Data on Digital Images

    R. Bala Krishnan1, D. Yuvaraj2, P. Suthanthira Devi3, Varghese S. Chooralil4, N. Rajesh Kumar1, B. Karthikeyan5, G. Manikandan5,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1563-1576, 2023, DOI:10.32604/csse.2023.035307
    Abstract With the improvement of current online communication schemes, it is now possible to successfully distribute and transport secured digital Content via the communication channel at a faster transmission rate. Traditional steganography and cryptography concepts are used to achieve the goal of concealing secret Content on a media and encrypting it before transmission. Both of the techniques mentioned above aid in the confidentiality of feature content. The proposed approach concerns secret content embodiment in selected pixels on digital image layers such as Red, Green, and Blue. The private Content originated from a medical client and was… More >

  • Open AccessOpen Access

    ARTICLE

    A Multimodel Transfer-Learning-Based Car Price Prediction Model with an Automatic Fuzzy Logic Parameter Optimizer

    Ping-Huan Kuo1,2, Sing-Yan Chen1, Her-Terng Yau1,2,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1577-1596, 2023, DOI:10.32604/csse.2023.036292
    Abstract Cars are regarded as an indispensable means of transportation in Taiwan. Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded. In this study, a price prediction system for used BMW cars was developed. Nine parameters of used cars, including their model, registration year, and transmission style, were analyzed. The data obtained were then divided into three subsets. The first subset was used to compare the results of each algorithm. The predicted values produced by the two algorithms with the most satisfactory results… More >

  • Open AccessOpen Access

    ARTICLE

    An Improved Deep Structure for Accurately Brain Tumor Recognition

    Mohamed Maher Ata1, Reem N. Yousef2, Faten Khalid Karim3,*, Doaa Sami Khafaga3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1597-1616, 2023, DOI:10.32604/csse.2023.034375
    Abstract Brain neoplasms are recognized with a biopsy, which is not commonly done before decisive brain surgery. By using Convolutional Neural Networks (CNNs) and textural features, the process of diagnosing brain tumors by radiologists would be a noninvasive procedure. This paper proposes a features fusion model that can distinguish between no tumor and brain tumor types via a novel deep learning structure. The proposed model extracts Gray Level Co-occurrence Matrix (GLCM) textural features from MRI brain tumor images. Moreover, a deep neural network (DNN) model has been proposed to select the most salient features from the… More >

  • Open AccessOpen Access

    ARTICLE

    Semiconducting SWCNT Photo Detector for High Speed Switching Through Single Halo Doping

    A. Arulmary1,*, V. Rajamani2, T. Kavitha2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1617-1630, 2023, DOI:10.32604/csse.2023.034681
    Abstract The method opted for accuracy, and no existing studies are based on this method. A design and characteristic survey of a new small band gap semiconducting Single Wall Carbon Nano Tube (SWCNT) Field Effect Transistor as a photodetector is carried out. In the proposed device, better performance is achieved by increasing the diameter and introducing a new single halo (SH) doping in the channel length of the CNTFET device. This paper is a study and analysis of the performance of a Carbon Nano Tube Field Effect Transistor (CNTFET) as a photodetector using the self-consistent Poisson… More >

  • Open AccessOpen Access

    ARTICLE

    Designing Adaptive Multiple Dependent State Sampling Plan for Accelerated Life Tests

    Pramote Charongrattanasakul1, Wimonmas Bamrungsetthapong2,*, Poom Kumam3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1631-1651, 2023, DOI:10.32604/csse.2023.036179
    Abstract A novel adaptive multiple dependent state sampling plan (AMDSSP) was designed to inspect products from a continuous manufacturing process under the accelerated life test (ALT) using both double sampling plan (DSP) and multiple dependent state sampling plan (MDSSP) concepts. Under accelerated conditions, the lifetime of a product follows the Weibull distribution with a known shape parameter, while the scale parameter can be determined using the acceleration factor (AF). The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive. An economic design of the proposed sampling plan was also considered for the… More >

  • Open AccessOpen Access

    ARTICLE

    Liver Tumor Decision Support System on Human Magnetic Resonance Images: A Comparative Study

    Hiam Alquran1,2, Yazan Al-Issa3, Mohammed Alslatie4, Isam Abu-Qasmieh1, Amin Alqudah3, Wan Azani Mustafa5,7,*, Yasmin Mohd Yacob6,7
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1653-1671, 2023, DOI:10.32604/csse.2023.033861
    Abstract Liver cancer is the second leading cause of cancer death worldwide. Early tumor detection may help identify suitable treatment and increase the survival rate. Medical imaging is a non-invasive tool that can help uncover abnormalities in human organs. Magnetic Resonance Imaging (MRI), in particular, uses magnetic fields and radio waves to differentiate internal human organs tissue. However, the interpretation of medical images requires the subjective expertise of a radiologist and oncologist. Thus, building an automated diagnosis computer-based system can help specialists reduce incorrect diagnoses. This paper proposes a hybrid automated system to compare the performance… More >

  • Open AccessOpen Access

    ARTICLE

    Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning

    S. Rajalakshmi1,*, S. Nalini2, Ahmed Alkhayyat3, Rami Q. Malik4
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1673-1688, 2023, DOI:10.32604/csse.2023.034414
    Abstract Remote sensing image (RSI) classifier roles a vital play in earth observation technology utilizing Remote sensing (RS) data are extremely exploited from both military and civil fields. More recently, as novel DL approaches develop, techniques for RSI classifiers with DL have attained important breakthroughs, providing a new opportunity for the research and development of RSI classifiers. This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification (ISMOGCN-HRSC) model. The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs. In the presented ISMOGCN-HRSC More >

  • Open AccessOpen Access

    ARTICLE

    Design of Six Element MIMO Antenna with Enhanced Gain for 28/38 GHz mm-Wave 5G Wireless Application

    K. Jayanthi1,*, A. M. Kalpana2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1689-1705, 2023, DOI:10.32604/csse.2023.034613
    Abstract The fifth-generation (5G) wireless technology is the most recent standardization in communication services of interest across the globe. The concept of Multiple-Input-Multiple-Output antenna (MIMO) systems has recently been incorporated to operate at higher frequencies without limitations. This paper addresses, design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz, respectively for 5G millimeter (mm)-wave applications. The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53 × 7.85 × 0.8 mm3. The patch antenna is fully grounded and is fed with More >

  • Open AccessOpen Access

    ARTICLE

    Comparative Analysis of Execution of CNN-Based Sanguine Data Transmission with LSB-SS and PVD-SS

    Alaknanda S. Patil1,*, G. Sundari1, Arun Kumar Sivaraman2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1707-1721, 2023, DOI:10.32604/csse.2023.034270
    Abstract The intact data transmission to the authentic user is becoming crucial at every moment in the current era. Steganography; is a technique for concealing the hidden message in any cover media such as image, video; and audio to increase the protection of data. The resilience and imperceptibility are improved by choosing an appropriate embedding position. This paper gives a novel system to immerse the secret information in different videos with different methods. An audio and video steganography with novel amalgamations are implemented to immerse the confidential auditory information and the authentic user’s face image. A… More >

  • Open AccessOpen Access

    ARTICLE

    Power Scheduling with Max User Comfort in Smart Home: Performance Analysis and Tradeoffs

    Muhammad Irfan1, Ch. Anwar Ul Hassan2, Faisal Althobiani3, Nasir Ayub4,*, Raja Jalees Ul Hussen Khan5, Emad Ismat Ghandourah6, Majid A. Almas7, Saleh Mohammed Ghonaim3, V. R. Shamji3, Saifur Rahman1
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1723-1740, 2023, DOI:10.32604/csse.2023.035141
    Abstract The smart grid has enabled users to control their home energy more effectively and efficiently. A home energy management system (HEM) is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy. Here, we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm (GWA) and Harmony Search Algorithms (HSA). Moreover, a fusion initiated on HSA and GWA operators is used to optimize energy intake. Furthermore, many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge. Hybridization has… More >

  • Open AccessOpen Access

    ARTICLE

    Classification of Multi-view Digital Mammogram Images Using SMO-WkNN

    P. Malathi1,*, G. Charlyn Pushpa Latha2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1741-1758, 2023, DOI:10.32604/csse.2023.035185
    Abstract Breast cancer (BCa) is a leading cause of death in the female population across the globe. Approximately 2.3 million new BCa cases are recorded globally in females, overtaking lung cancer as the most prevalent form of cancer to be diagnosed. However, the mortality rates for cervical and BCa are significantly higher in developing nations than in developed countries. Early diagnosis is the only option to minimize the risks of BCa. Deep learning (DL)-based models have performed well in image processing in recent years, particularly convolutional neural network (CNN). Hence, this research proposes a DL-based CNN… More >

  • Open AccessOpen Access

    ARTICLE

    An Improved LSTM-PCA Ensemble Classifier for SQL Injection and XSS Attack Detection

    Deris Stiawan1, Ali Bardadi1, Nurul Afifah1, Lisa Melinda1, Ahmad Heryanto1, Tri Wanda Septian1, Mohd Yazid Idris2, Imam Much Ibnu Subroto3, Lukman4, Rahmat Budiarto5,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1759-1774, 2023, DOI:10.32604/csse.2023.034047
    Abstract The Repository Mahasiswa (RAMA) is a national repository of research reports in the form of final assignments, student projects, theses, dissertations, and research reports of lecturers or researchers that have not yet been published in journals, conferences, or integrated books from the scientific repository of universities and research institutes in Indonesia. The increasing popularity of the RAMA Repository leads to security issues, including the two most widespread, vulnerable attacks i.e., Structured Query Language (SQL) injection and cross-site scripting (XSS) attacks. An attacker gaining access to data and performing unauthorized data modifications is extremely dangerous. This… More >

  • Open AccessOpen Access

    ARTICLE

    Improving Recommendation for Effective Personalization in Context-Aware Data Using Novel Neural Network

    R. Sujatha1,*, T. Abirami2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1775-1787, 2023, DOI:10.32604/csse.2023.031552
    Abstract The digital technologies that run based on users’ content provide a platform for users to help air their opinions on various aspects of a particular subject or product. The recommendation agents play a crucial role in personalizing the needs of individual users. Therefore, it is essential to improve the user experience. The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites. In Context-Aware Recommender Systems (CARS), several influential and contextual variables are identified to provide an effective recommendation. A… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Explainable CNN Model for Screening COVID-19 on X-ray Images

    Hicham Moujahid1, Bouchaib Cherradi1,2,*, Oussama El Gannour1, Wamda Nagmeldin3, Abdelzahir Abdelmaboud4, Mohammed Al-Sarem5,6, Lhoussain Bahatti1, Faisal Saeed7, Mohammed Hadwan8,9
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1789-1809, 2023, DOI:10.32604/csse.2023.034022
    Abstract Due to the rapid propagation characteristic of the Coronavirus (COVID-19) disease, manual diagnostic methods cannot handle the large number of infected individuals to prevent the spread of infection. Despite, new automated diagnostic methods have been brought on board, particularly methods based on artificial intelligence using different medical data such as X-ray imaging. Thoracic imaging, for example, produces several image types that can be processed and analyzed by machine and deep learning methods. X-ray imaging materials widely exist in most hospitals and health institutes since they are affordable compared to other imaging machines. Through this paper,… More >

  • Open AccessOpen Access

    ARTICLE

    Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification

    M. Uvaneshwari1, M. Baskar2,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1811-1826, 2023, DOI:10.32604/csse.2023.035455
    Abstract The Brain Tumor (BT) is created by an uncontrollable rise of anomalous cells in brain tissue, and it consists of 2 types of cancers they are malignant and benign tumors. The benevolent BT does not affect the neighbouring healthy and normal tissue; however, the malignant could affect the adjacent brain tissues, which results in death. Initial recognition of BT is highly significant to protecting the patient’s life. Generally, the BT can be identified through the magnetic resonance imaging (MRI) scanning technique. But the radiotherapists are not offering effective tumor segmentation in MRI images because of… More >

  • Open AccessOpen Access

    ARTICLE

    Optimization of Quantum Cost for Low Energy Reversible Signed/Unsigned Multiplier Using Urdhva-Tiryakbhyam Sutra

    Marwa A. Elmenyawi1,2,*, Radwa M. Tawfeek1
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1827-1844, 2023, DOI:10.32604/csse.2023.036474
    Abstract One of the elementary operations in computing systems is multiplication. Therefore, high-speed and low-power multipliers design is mandatory for efficient computing systems. In designing low-energy dissipation circuits, reversible logic is more efficient than irreversible logic circuits but at the cost of higher complexity. This paper introduces an efficient signed/unsigned 4 × 4 reversible Vedic multiplier with minimum quantum cost. The Vedic multiplier is considered fast as it generates all partial product and their sum in one step. This paper proposes two reversible Vedic multipliers with optimized quantum cost and garbage output. First, the unsigned Vedic… More >

  • Open AccessOpen Access

    ARTICLE

    Brain Tumor Identification Using Data Augmentation and Transfer Learning Approach

    K. Kavin Kumar1, P. M. Dinesh2, P. Rayavel3, L. Vijayaraja4, R. Dhanasekar4, Rupa Kesavan5, Kannadasan Raju6, Arfat Ahmad Khan7, Chitapong Wechtaisong8,*, Mohd Anul Haq9, Zamil S. Alzamil9, Ahmed Alhussen10
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1845-1861, 2023, DOI:10.32604/csse.2023.033927
    Abstract A brain tumor is a lethal neurological disease that affects the average performance of the brain and can be fatal. In India, around 15 million cases are diagnosed yearly. To mitigate the seriousness of the tumor it is essential to diagnose at the beginning. Notwithstanding, the manual evaluation process utilizing Magnetic Resonance Imaging (MRI) causes a few worries, remarkably inefficient and inaccurate brain tumor diagnoses. Similarly, the examination process of brain tumors is intricate as they display high unbalance in nature like shape, size, appearance, and location. Therefore, a precise and expeditious prognosis of brain… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Learning Based Face Mask Detection in Religious Mass Gathering During COVID-19 Pandemic

    Abdullah S. AL-Malaise AL-Ghamdi1,2,3, Sultanah M. Alshammari3,4, Mahmoud Ragab3,5,6,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1863-1877, 2023, DOI:10.32604/csse.2023.035869
    Abstract Notwithstanding the religious intention of billions of devotees, the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most attendees ignored preventive measures, namely maintaining physical distance, practising hand hygiene, and wearing facemasks. Wearing a face mask in public areas protects people from spreading COVID-19. Artificial intelligence (AI) based on deep learning (DL) and machine learning (ML) could assist in fighting covid-19 in several ways. This study introduces a new deep learning-based Face Mask Detection in Religious Mass… More >

  • Open AccessOpen Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658
    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

  • Open AccessOpen Access

    ARTICLE

    Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification

    Mohammad Yamin1,*, Sarah Basahel1, Saleh Bajaba2, Mona Abusurrah3, E. Laxmi Lydia4
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1901-1916, 2023, DOI:10.32604/csse.2023.036455
    Abstract Recently, there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy (DR). DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged people in the developed world. Initial detection of DR becomes necessary for decreasing the disease severity by making use of retinal fundus images. This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic Retinopathy (DLLSHDM-DR) on Retinal Fundus Images. The proposed DLLSHDM-DR technique intends to assist physicians with the DR decision-making method. In the DLLSHDM-DR… More >

  • Open AccessOpen Access

    ARTICLE

    Horizontal Voting Ensemble Based Predictive Modeling System for Colon Cancer

    Ushaa Eswaran1,*, S. Anand2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1917-1928, 2023, DOI:10.32604/csse.2023.032523
    Abstract Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance… More >

  • Open AccessOpen Access

    ARTICLE

    Red Deer Optimization with Artificial Intelligence Enabled Image Captioning System for Visually Impaired People

    Anwer Mustafa Hilal1,*, Fadwa Alrowais2, Fahd N. Al-Wesabi3, Radwa Marzouk4,5
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1929-1945, 2023, DOI:10.32604/csse.2023.035529
    Abstract The problem of producing a natural language description of an image for describing the visual content has gained more attention in natural language processing (NLP) and computer vision (CV). It can be driven by applications like image retrieval or indexing, virtual assistants, image understanding, and support of visually impaired people (VIP). Though the VIP uses other senses, touch and hearing, for recognizing objects and events, the quality of life of those persons is lower than the standard level. Automatic Image captioning generates captions that will be read loudly to the VIP, thereby realizing matters happening… More >

  • Open AccessOpen Access

    ARTICLE

    Structural Interval Reliability Algorithm Based on Bernstein Polynomials and Evidence Theory

    Xu Zhang1, Jianchao Ni2, Juxi Hu3,*, Weisi Chen4
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1947-1960, 2023, DOI:10.32604/csse.2023.035118
    Abstract Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors. Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid. The uncertain parameters mainly exist in the form of intervals. This method requires a lot of calculation and is often difficult to achieve efficiently. In order to solve this problem, this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive… More >

  • Open AccessOpen Access

    ARTICLE

    Optimized Model Based Controller with Model Plant Mismatch for NMP Mitigation in Boost Converter

    R. Prasanna1,*, Uma Govindarajan1, N. S. Bhuvaneswari2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1961-1979, 2023, DOI:10.32604/csse.2023.032424
    Abstract In this paper, an optimized Genetic Algorithm (GA) based internal model controller-proportional integral derivative (IMC-PID) controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase (NMP) behavior due to the presence of a right-half plane zero (RHPZ). This RHPZ limits the dynamic performance of the converter and leads to internal instability. The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameter λ. Also, More >

  • Open AccessOpen Access

    ARTICLE

    Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering for Noisy Data

    Pham Huy Thong1,2,3, Florentin Smarandache4, Phung The Huan5, Tran Manh Tuan6, Tran Thi Ngan6,*, Vu Duc Thai5, Nguyen Long Giang2, Le Hoang Son3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1981-1997, 2023, DOI:10.32604/csse.2023.035692
    Abstract Clustering is a crucial method for deciphering data structure and producing new information. Due to its significance in revealing fundamental connections between the human brain and events, it is essential to utilize clustering for cognitive research. Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties. Noisy data can lead to incorrect object recognition and inference. This research aims to innovate a novel clustering approach, named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering (PNTS3FCM), to solve the clustering problem with noisy data… More >

  • Open AccessOpen Access

    ARTICLE

    A Method for Classification and Evaluation of Pilot’s Mental States Based on CNN

    Qianlei Wang1,2,3,*, Zaijun Wang3, Renhe Xiong4, Xingbin Liao1,2, Xiaojun Tan5
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1999-2020, 2023, DOI:10.32604/csse.2023.034183
    Abstract How to accurately recognize the mental state of pilots is a focus in civil aviation safety. The mental state of pilots is closely related to their cognitive ability in piloting. Whether the cognitive ability meets the standard is related to flight safety. However, the pilot's working state is unique, which increases the difficulty of analyzing the pilot's mental state. In this work, we proposed a Convolutional Neural Network (CNN) that merges attention to classify the mental state of pilots through electroencephalography (EEG). Considering the individual differences in EEG, semi-supervised learning based on improved K-Means is… More >

  • Open AccessOpen Access

    ARTICLE

    An Effective Diagnosis System for Brain Tumor Detection and Classification

    Ahmed A. Alsheikhy1,*, Ahmad S. Azzahrani1, A. Khuzaim Alzahrani2, Tawfeeq Shawly3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2021-2037, 2023, DOI:10.32604/csse.2023.036107
    Abstract A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain. This growth is considered deadly since it may cause death. The brain controls numerous functions, such as memory, vision, and emotions. Due to the location, size, and shape of these tumors, their detection is a challenging and complex task. Several efforts have been conducted toward improved detection and yielded promising results and outcomes. However, the accuracy should be higher than what has been reached. This paper presents a method to detect brain tumors with high accuracy. The method works using… More >

  • Open AccessOpen Access

    ARTICLE

    MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning Method to Classify Leukemia Form Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2039-2058, 2023, DOI:10.32604/csse.2023.036985
    Abstract Leukemia, often called blood cancer, is a disease that primarily affects white blood cells (WBCs), which harms a person’s tissues and plasma. This condition may be fatal when if it is not diagnosed and recognized at an early stage. The physical technique and lab procedures for Leukaemia identification are considered time-consuming. It is crucial to use a quick and unexpected way to identify different forms of Leukaemia. Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment. Various deep-learning… More >

  • Open AccessOpen Access

    ARTICLE

    An Unsupervised Writer Identification Based on Generating Clusterable Embeddings

    M. F. Mridha1, Zabir Mohammad2, Muhammad Mohsin Kabir2, Aklima Akter Lima2, Sujoy Chandra Das2, Md Rashedul Islam3,*, Yutaka Watanobe4
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2059-2073, 2023, DOI:10.32604/csse.2023.032977
    Abstract The writer identification system identifies individuals based on their handwriting is a frequent topic in biometric authentication and verification systems. Due to its importance, numerous studies have been conducted in various languages. Researchers have established several learning methods for writer identification including supervised and unsupervised learning. However, supervised methods require a large amount of annotation data, which is impossible in most scenarios. On the other hand, unsupervised writer identification methods may be limited and dependent on feature extraction that cannot provide the proper objectives to the architecture and be misinterpreted. This paper introduces an unsupervised… More >

  • Open AccessOpen Access

    ARTICLE

    Novel Metrics for Mutation Analysis

    Savas Takan1,*, Gokmen Katipoglu2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2075-2089, 2023, DOI:10.32604/csse.2023.036791
    Abstract A measure of the “goodness” or efficiency of the test suite is used to determine the proficiency of a test suite. The appropriateness of the test suite is determined through mutation analysis. Several Finite State Machine (FSM) mutants are produced in mutation analysis by injecting errors against hypotheses. These mutants serve as test subjects for the test suite (TS). The effectiveness of the test suite is proportional to the number of eliminated mutants. The most effective test suite is the one that removes the most significant number of mutants at the optimal time. It is… More >

  • Open AccessOpen Access

    ARTICLE

    Portable and Efficient Implementation of CRYSTALS-Kyber Based on WebAssembly

    Seog Chung Seo1, HeeSeok Kim2,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2091-2107, 2023, DOI:10.32604/csse.2023.035064
    Abstract With the rapid development of quantum computers capable of realizing Shor’s algorithm, existing public key-based algorithms face a significant security risk. Crystals-Kyber has been selected as the only key encapsulation mechanism (KEM) algorithm in the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) competition. In this study, we present a portable and efficient implementation of a Crystals-Kyber post-quantum KEM based on WebAssembly (Wasm), a recently released portable execution framework for high-performance web applications. Until now, most Kyber implementations have been developed with native programming languages such as C and Assembly. Although there are… More >

  • Open AccessOpen Access

    ARTICLE

    Defected Ground Structure Multiple Input-Output Antenna For Wireless Applications

    Ramya Sridhar1,*, Vijayalakshimi Patteeswaran2
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2109-2122, 2023, DOI:10.32604/csse.2023.036781
    Abstract In this paper, the investigation of a novel compact 2 × 2, 2 × 1, and 1 × 1 Ultra-Wide Band (UWB) based Multiple-Input Multiple-Output (MIMO) antenna with Defected Ground Structure (DGS) is employed. The proposed Electromagnetic Radiation Structures (ERS) is composed of multiple radiating elements. These MIMO antennas are designed and analyzed with and without DGS. The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size, which is 60 × 40 × 1 mm. The high directivity and divergence characteristics are attained by introducing the microstrip-fed lines perpendicular… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Machine Learning–Based Hand Gesture Recognition Using HCI on IoT Assisted Cloud Platform

    Saurabh Adhikari1, Tushar Kanti Gangopadhayay1, Souvik Pal2,3, D. Akila4, Mamoona Humayun5, Majed Alfayad6, N. Z. Jhanjhi7,*
    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2123-2140, 2023, DOI:10.32604/csse.2023.034431
    Abstract Machine learning is a technique for analyzing data that aids the construction of mathematical models. Because of the growth of the Internet of Things (IoT) and wearable sensor devices, gesture interfaces are becoming a more natural and expedient human-machine interaction method. This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns. The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition. Potential applications of hand gesture recognition research… More >

Per Page:

Share Link