Home / Journals / CSSE / Vol.47, No.3, 2023
Special Issues
  • Open AccessOpen Access

    ARTICLE

    Medi-Block Record Secure Data Sharing in Healthcare System: Issues, Solutions and Challenges

    Zuriati Ahmad Zukarnain1,*, Amgad Muneer2,3, Nur Atirah Mohamad Nassir1, Akram A. Almohammedi4,5
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2725-2740, 2023, DOI:10.32604/csse.2023.034448
    (This article belongs to the Special Issue: Application of Advanced Internet of Things Technologies for Customized Healthcare Systems)
    Abstract With the advancements in the era of artificial intelligence, blockchain, cloud computing, and big data, there is a need for secure, decentralized medical record storage and retrieval systems. While cloud storage solves storage issues, it is challenging to realize secure sharing of records over the network. Medi-block record in the healthcare system has brought a new digitalization method for patients’ medical records. This centralized technology provides a symmetrical process between the hospital and doctors when patients urgently need to go to a different or nearby hospital. It enables electronic medical records to be available with… More >

  • Open AccessOpen Access

    ARTICLE

    Deer Hunting Optimization with Deep Learning Enabled Emotion Classification on English Twitter Data

    Abdelwahed Motwakel1,*, Hala J. Alshahrani2, Jaber S. Alzahrani3, Ayman Yafoz4, Heba Mohsen5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohamed I. Eldesouki6
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2741-2757, 2023, DOI:10.32604/csse.2023.034721
    Abstract Currently, individuals use online social media, namely Facebook or Twitter, for sharing their thoughts and emotions. Detection of emotions on social networking sites’ finds useful in several applications in social welfare, commerce, public health, and so on. Emotion is expressed in several means, like facial and speech expressions, gestures, and written text. Emotion recognition in a text document is a content-based classification problem that includes notions from deep learning (DL) and natural language processing (NLP) domains. This article proposes a Deer Hunting Optimization with Deep Belief Network Enabled Emotion Classification (DHODBN-EC) on English Twitter Data… More >

  • Open AccessOpen Access

    ARTICLE

    Action Recognition for Multiview Skeleton 3D Data Using NTURGB + D Dataset

    Rosepreet Kaur Bhogal1,*, V. Devendran2
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2759-2772, 2023, DOI:10.32604/csse.2023.034862
    (This article belongs to the Special Issue: Intrusion Detection and Trust Provisioning in Edge-of-Things Environment)
    Abstract Human activity recognition is a recent area of research for researchers. Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities, develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition. This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further proposed two neural networks: convolutional neural network recurrent neural network_1… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis

    Ahmad Alassaf*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2773-2789, 2023, DOI:10.32604/csse.2023.035899
    Abstract Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare. Deep Learning (DL) models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models. On the other hand, skin lesion-based segregation and disintegration procedures play an essential role in earlier skin cancer detection. However, artefacts, an unclear boundary, poor contrast, and different lesion sizes make detection difficult. To address the issues in skin lesion diagnosis, this study creates the UDLS-DDOA model, an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder (UDLS) optimized by Dynamic Differential… More >

  • Open AccessOpen Access

    ARTICLE

    Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2791-2814, 2023, DOI:10.32604/csse.2023.038762
    Abstract Data mining plays a crucial role in extracting meaningful knowledge from large-scale data repositories, such as data warehouses and databases. Association rule mining, a fundamental process in data mining, involves discovering correlations, patterns, and causal structures within datasets. In the healthcare domain, association rules offer valuable opportunities for building knowledge bases, enabling intelligent diagnoses, and extracting invaluable information rapidly. This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System (MLARMC-HDMS). The MLARMC-HDMS technique integrates classification and association rule mining (ARM) processes. Initially, the chimp… More >

  • Open AccessOpen Access

    ARTICLE

    MBE: A Music Copyright Depository Framework Incorporating Blockchain and Edge Computing

    Jianmao Xiao1, Ridong Huang1, Jiangyu Wang1, Zhean Zhong1, Chenyu Liu1, Yuanlong Cao1,*, Chuying Ouyang2
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2815-2834, 2023, DOI:10.32604/csse.2023.039716
    (This article belongs to the Special Issue: Advances in Mobile Internet Security)
    Abstract Audio copyright is a crucial issue in the music industry, as it protects the rights and interests of creators and distributors. This paper studies the current situation of digital music copyright certification and proposes a music copyright certification framework based on “blockchain + edge computing mode,” abbreviated as MBE, by integrating edge computing into the Hyperledger Fabric system. MBE framework compresses and splits the audio into small chunks, performs Fast Fourier Transform (FFT) to extract the peak points of each frequency and combines them to obtain unique audio fingerprint information. After being confirmed by various… More >

  • Open AccessOpen Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765
    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range More >

  • Open AccessOpen Access

    ARTICLE

    A Conditionally Anonymous Linkable Ring Signature for Blockchain Privacy Protection

    Quan Zhou1,*, Yulong Zheng1, Minhui Chen2, Kaijun Wei2
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2851-2867, 2023, DOI:10.32604/csse.2023.039908
    (This article belongs to the Special Issue: Blockchain, Artificial Intelligence, Internet of Things and 6G Convergence)
    Abstract In recent years, the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention. To ensure privacy protection for both sides of the transaction, many researchers are using ring signature technology instead of the original signature technology. However, in practice, identifying the signer of an illegal blockchain transaction once it has been placed on the chain necessitates a signature technique that offers conditional anonymity. Some illegals can conduct illegal transactions and evade the law using ring signatures, which offer perfect anonymity. This paper firstly constructs a conditionally anonymous linkable ring… More >

  • Open AccessOpen Access

    ARTICLE

    An Efficient Character-Level Adversarial Attack Inspired by Textual Variations in Online Social Media Platforms

    Jebran Khan1, Kashif Ahmad2, Kyung-Ah Sohn1,3,*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2869-2894, 2023, DOI:10.32604/csse.2023.040159
    (This article belongs to the Special Issue: Intelligent Uni-modal and Multi-modal Agents against Adversarial Cyber Attacks)
    Abstract In recent years, the growing popularity of social media platforms has led to several interesting natural language processing (NLP) applications. However, these social media-based NLP applications are subject to different types of adversarial attacks due to the vulnerabilities of machine learning (ML) and NLP techniques. This work presents a new low-level adversarial attack recipe inspired by textual variations in online social media communication. These variations are generated to convey the message using out-of-vocabulary words based on visual and phonetic similarities of characters and words in the shortest possible form. The intuition of the proposed scheme… More >

  • Open AccessOpen Access

    ARTICLE

    CeTrivium: A Stream Cipher Based on Cellular Automata for Securing Real-Time Multimedia Transmission

    Osama S. Younes1,2,*, Abdulmohsen Alharbi1, Ali Yasseen1, Faisal Alshareef1, Faisal Albalawi1, Umar A. Albalawi1,3
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2895-2920, 2023, DOI:10.32604/csse.2023.040162
    Abstract Due to their significant correlation and redundancy, conventional block cipher cryptosystems are not efficient in encrypting multimedia data. Stream ciphers based on Cellular Automata (CA) can provide a more effective solution. The CA have recently gained recognition as a robust cryptographic primitive, being used as pseudorandom number generators in hash functions, block ciphers and stream ciphers. CA have the ability to perform parallel transformations, resulting in high throughput performance. Additionally, they exhibit a natural tendency to resist fault attacks. Few stream cipher schemes based on CA have been proposed in the literature. Though, their encryption/decryption… More >

  • Open AccessOpen Access

    ARTICLE

    Enhanced 3D Point Cloud Reconstruction for Light Field Microscopy Using U-Net-Based Convolutional Neural Networks

    Shariar Md Imtiaz1, Ki-Chul Kwon1, F. M. Fahmid Hossain1, Md. Biddut Hossain1, Rupali Kiran Shinde1, Sang-Keun Gil2, Nam Kim1,*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2921-2937, 2023, DOI:10.32604/csse.2023.040205
    (This article belongs to the Special Issue: Advanced Machine Learning and Artificial Intelligence in Engineering Applications)
    Abstract This article describes a novel approach for enhancing the three-dimensional (3D) point cloud reconstruction for light field microscopy (LFM) using U-net architecture-based fully convolutional neural network (CNN). Since the directional view of the LFM is limited, noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds. The existing methods suffer from these problems due to the self-occlusion of the model. This manuscript proposes a deep fusion learning (DL) method that combines a 3D CNN with a U-Net-based model as a feature extractor. The sub-aperture images obtained from the light field… More >

  • Open AccessOpen Access

    ARTICLE

    Fast and Accurate Detection of Masked Faces Using CNNs and LBPs

    Sarah M. Alhammad1, Doaa Sami Khafaga1,*, Aya Y. Hamed2, Osama El-Koumy3, Ehab R. Mohamed3, Khalid M. Hosny3
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2939-2952, 2023, DOI:10.32604/csse.2023.041011
    Abstract Face mask detection has several applications, including real-time surveillance, biometrics, etc. Identifying face masks is also helpful for crowd control and ensuring people wear them publicly. With monitoring personnel, it is impossible to ensure that people wear face masks; automated systems are a much superior option for face mask detection and monitoring. This paper introduces a simple and efficient approach for masked face detection. The architecture of the proposed approach is very straightforward; it combines deep learning and local binary patterns to extract features and classify them as masked or unmasked. The proposed system requires… More >

  • Open AccessOpen Access

    ARTICLE

    Entropy Based Feature Fusion Using Deep Learning for Waste Object Detection and Classification Model

    Ehab Bahaudien Ashary1, Sahar Jambi2, Rehab B. Ashari2, Mahmoud Ragab3,4,*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2953-2969, 2023, DOI:10.32604/csse.2023.041523
    Abstract Object Detection is the task of localization and classification of objects in a video or image. In recent times, because of its widespread applications, it has obtained more importance. In the modern world, waste pollution is one significant environmental problem. The prominence of recycling is known very well for both ecological and economic reasons, and the industry needs higher efficiency. Waste object detection utilizing deep learning (DL) involves training a machine-learning method to classify and detect various types of waste in videos or images. This technology is utilized for several purposes recycling and sorting waste,… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Incremental Attribute Reduction Algorithm Based on Intuitionistic Fuzzy Partition Distance

    Pham Viet Anh1,3, Nguyen Ngoc Thuy4, Nguyen Long Giang2, Pham Dinh Khanh5, Nguyen The Thuy1,6,*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2971-2988, 2023, DOI:10.32604/csse.2023.042068
    Abstract Attribute reduction, also known as feature selection, for decision information systems is one of the most pivotal issues in machine learning and data mining. Approaches based on the rough set theory and some extensions were proved to be efficient for dealing with the problem of attribute reduction. Unfortunately, the intuitionistic fuzzy sets based methods have not received much interest, while these methods are well-known as a very powerful approach to noisy decision tables, i.e., data tables with the low initial classification accuracy. Therefore, this paper provides a novel incremental attribute reduction method to deal more… More >

  • Open AccessOpen Access

    ARTICLE

    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078
    (This article belongs to the Special Issue: Artificial Intelligence for clinical medicine and computer-aided diagnosis (CAD))
    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of… More >

  • Open AccessOpen Access

    ARTICLE

    An Adaptive Edge Detection Algorithm for Weed Image Analysis

    Yousef Alhwaiti1,*, Muhammad Hameed Siddiqi1, Irshad Ahmad2
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3011-3031, 2023, DOI:10.32604/csse.2023.042110
    Abstract Weeds are one of the utmost damaging agricultural annoyers that have a major influence on crops. Weeds have the responsibility to get higher production costs due to the waste of crops and also have a major influence on the worldwide agricultural economy. The significance of such concern got motivation in the research community to explore the usage of technology for the detection of weeds at early stages that support farmers in agricultural fields. Some weed methods have been proposed for these fields; however, these algorithms still have challenges as they were implemented against controlled environments.… More >

  • Open AccessOpen Access

    ARTICLE

    Ligand Based Virtual Screening of Molecular Compounds in Drug Discovery Using GCAN Fingerprint and Ensemble Machine Learning Algorithm

    R. Ani1,*, O. S. Deepa2, B. R. Manju1
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3033-3048, 2023, DOI:10.32604/csse.2023.033807
    Abstract The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein. The use of virtual screening in pharmaceutical research is growing in popularity. During the early phases of medication research and development, it is crucial. Chemical compound searches are now more narrowly targeted. Because the databases contain more and more ligands, this method needs to be quick and exact. Neural network fingerprints were created… More >

  • Open AccessOpen Access

    ARTICLE

    Multi-Versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis on Arabic Corpus

    Mesfer Al Duhayyim1,*, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Abdullah Mohamed5, Ishfaq Yaseen6, Gouse Pasha Mohammed6, Mohammed Rizwanullah6, Abu Sarwar Zamani6
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3049-3065, 2023, DOI:10.32604/csse.2023.033836
    Abstract Sentiment analysis (SA) of the Arabic language becomes important despite scarce annotated corpora and confined sources. Arabic affect Analysis has become an active research zone nowadays. But still, the Arabic language lags behind adequate language sources for enabling the SA tasks. Thus, Arabic still faces challenges in natural language processing (NLP) tasks because of its structure complexities, history, and distinct cultures. It has gained lesser effort than the other languages. This paper developed a Multi-versus Optimization with Deep Reinforcement Learning Enabled Affect Analysis (MVODRL-AA) on Arabic Corpus. The presented MVODRL-AA model majorly concentrates on identifying… More >

  • Open AccessOpen Access

    ARTICLE

    A Graph Neural Network Recommendation Based on Long- and Short-Term Preference

    Bohuai Xiao1,2, Xiaolan Xie1,2,*, Chengyong Yang3
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3067-3082, 2023, DOI:10.32604/csse.2023.034712
    Abstract The recommendation system (RS) on the strength of Graph Neural Networks (GNN) perceives a user-item interaction graph after collecting all items the user has interacted with. Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession. However, user preferences are dynamic. With the passage of time and some trend guidance, users may generate some short-term preferences, which are more likely to lead to user-item interactions. A GNN recommendation based on long- and short-term preference (LSGNN) is proposed to address the above problems. LSGNN consists of More >

  • Open AccessOpen Access

    ARTICLE

    Performance Improvement through Novel Adaptive Node and Container Aware Scheduler with Resource Availability Control in Hadoop YARN

    J. S. Manjaly, T. Subbulakshmi*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3083-3108, 2023, DOI:10.32604/csse.2023.036320
    Abstract The default scheduler of Apache Hadoop demonstrates operational inefficiencies when connecting external sources and processing transformation jobs. This paper has proposed a novel scheduler for enhancement of the performance of the Hadoop Yet Another Resource Negotiator (YARN) scheduler, called the Adaptive Node and Container Aware Scheduler (ANACRAC), that aligns cluster resources to the demands of the applications in the real world. The approach performs to leverage the user-provided configurations as a unique design to apportion nodes, or containers within the nodes, to application thresholds. Additionally, it provides the flexibility to the applications for selecting and… More >

  • Open AccessOpen Access

    ARTICLE

    Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System

    Nojood O Aljehane*
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3109-3126, 2023, DOI:10.32604/csse.2023.038042
    Abstract Medical image analysis is an active research topic, with thousands of studies published in the past few years. Transfer learning (TL) including convolutional neural networks (CNNs) focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance. It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time. This study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System (ETSOTL-MIAS). The goal of the ETSOTL-MIAS technique lies in… More >

  • Open AccessOpen Access

    ARTICLE

    Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3127-3144, 2023, DOI:10.32604/csse.2023.038959
    Abstract Computational intelligence (CI) is a group of nature-simulated computational models and processes for addressing difficult real-life problems. The CI is useful in the UAV domain as it produces efficient, precise, and rapid solutions. Besides, unmanned aerial vehicles (UAV) developed a hot research topic in the smart city environment. Despite the benefits of UAVs, security remains a major challenging issue. In addition, deep learning (DL) enabled image classification is useful for several applications such as land cover classification, smart buildings, etc. This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification (MDLS-UAVIC) model… More >

  • Open AccessOpen Access

    ARTICLE

    Hybrid Dynamic Optimization for Multilevel Security System in Disseminating Confidential Information

    Shahina Anwarul1, Sunil Kumar2, Ashok Bhansali3, Hammam Alshazly4,*, Hany S. Hussein5,6
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3145-3163, 2023, DOI:10.32604/csse.2023.041061
    (This article belongs to the Special Issue: Security and Privacy Challenges in Smart City)
    Abstract Security systems are the need of the hour to protect data from unauthorized access. The dissemination of confidential information over the public network requires a high level of security. The security approach such as steganography ensures confidentiality, authentication, integrity, and non-repudiation. Steganography helps in hiding the secret data inside the cover media so that the attacker can be confused during the transmission process of secret data between sender and receiver. Therefore, we present an efficient hybrid security model that provides multifold security assurance. To this end, a rectified Advanced Encryption Standard (AES) algorithm is proposed More >

  • Open AccessOpen Access

    ARTICLE

    Security Test Case Prioritization through Ant Colony Optimization Algorithm

    Abdulaziz Attaallah1, Khalil al-Sulbi2, Areej Alasiry3, Mehrez Marzougui3, Mohd Waris Khan4,*, Mohd Faizan4, Alka Agrawal5, Dhirendra Pandey5
    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3165-3195, 2023, DOI:10.32604/csse.2023.040259
    Abstract Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems. One of the challenges in software security testing is test case prioritization, which aims to reduce redundancy in fault occurrences when executing test suites. By effectively applying test case prioritization, both the time and cost required for developing secure software can be reduced. This paper proposes a test case prioritization technique based on the Ant Colony Optimization (ACO) algorithm, a metaheuristic approach. The performance of the ACO-based technique is evaluated using More >

Per Page:

Share Link