Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,174)
  • Open Access

    ARTICLE

    Numerical Investigation of Wind Resistance in Inland River Low-Emission Ships

    Guang Chen1, Shiwang Dang1, Fanpeng Kong2, Lingchong Hu1, Zhiming Zhang1, Yi Guo3, Xue Pei1, Jichao Li1,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2721-2740, 2025, DOI:10.32604/fdmp.2025.068889 - 01 December 2025

    Abstract To enhance the navigation efficiency of inland new-energy ships and reduce energy consumption and emissions, this study investigates wind load coefficients under 13 conditions, combining a wind speed of 2.0 m/s with wind direction angles ranging from 0° to 180° in 15° increments. Using Computational Fluid Dynamics (CFD) simulations, the wind load is decomposed into along-course (CX) and transverse (CY) components, and their variation with wind direction is systematically analyzed. Results show that CX is maximal under headwind (0°), decreases approximately following a cosine trend, and reaches its most negative value under tailwind (180°). CY peaks at More >

  • Open Access

    ARTICLE

    Large-Volume Hydraulic Fracturing in Tight Gas Reservoirs: High-Efficiency Stimulation and Geological Adaptability Assessment

    Bo Wang1, Fuyang Wu2, Zifeng Chen2, Libin Dai1, Yifan Dong1, Xiaotao Gao3, Zongfa Li2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2701-2719, 2025, DOI:10.32604/fdmp.2025.067298 - 01 December 2025

    Abstract Tight gas reservoirs are often characterized by pronounced heterogeneity and poor continuity, resulting in wide variability in production enhancement and net present value (NPV) for different geological parameter combinations (see e.g., the Ordos Basin). The conditions governing geological adaptability remain insufficiently defined. To address these challenges, this study integrates large-volume hydraulic fracturing, numerical production simulation, and economic evaluation to elucidate the mechanisms by which large-scale fracturing enhances fracture parameters in tight gas formations. The analysis reveals that, for identical proppant and fluid volumes, increasing the fracturing injection rate leads to longer and taller fractures. Over… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Nano-Blood Flow in Mild to Severe Multiple Constricted Curved Arteries

    Sehrish Bibi1,*, Vincenzo Minutolo2, Obaid Ullah Mehmood3, Renato Zona2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2473-2493, 2025, DOI:10.32604/fdmp.2025.072470 - 30 October 2025

    Abstract Arterial stenosis is a critical condition with increasing prevalence among pediatric patients and young adults, making its investigation highly significant. Despite extensive studies on blood flow dynamics, limited research addresses the combined effects of nanoparticles and arterial curvature on unsteady pulsatile flow through multiple stenoses. This study aims to analyze the influence of nanoparticles on blood flow characteristics in realistic curved arteries with mild to severe overlapped constrictions. Using curvilinear coordinates, the thermal energy and momentum equations for nanoparticle-laden blood were derived, and numerical results were obtained through an explicit finite difference method. Key findings More >

  • Open Access

    REVIEW

    Fault-Induced Floor Water Inrush in Confined Aquifers under Mining Stress: Mechanisms and Prevention Technologies—A State-of-the-Art Review

    Zhengzheng Cao1,2,3, Fangxu Guo1, Wenqiang Wang2,3,4,*, Feng Du2,3,4, Zhenhua Li2,3,4, Shuaiyang Zhang1, Qixuan Wang1, Yongzhi Zhai1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2419-2442, 2025, DOI:10.32604/fdmp.2025.070624 - 30 October 2025

    Abstract With the depletion of shallow mineral resources, mining operations are extending to greater depths and larger scales, increasing the risk of water inrush disasters, particularly from confined aquifers intersected by faults. This paper reviews the current state of research on fault-induced water inrushes in mining faces, examining the damage characteristics and permeability of fractured floor rock, the mechanical behavior of faults under mining stress, and the mechanisms driving water inrush. Advances in prevention technologies, risk assessment, and prediction methods are also summarized. Research shows that damage evolution in fractured floor rock, coupled with fluid-solid interactions,… More > Graphic Abstract

    Fault-Induced Floor Water Inrush in Confined Aquifers under Mining Stress: Mechanisms and Prevention Technologies—A State-of-the-Art Review

  • Open Access

    ARTICLE

    Impact of Window-to-Wall Ratio on Thermal Comfort and Energy Performance of Hybrid Cooling Systems

    Dong Liu1, Runze Zhang1, Anjie Hu1, Na Liu1, Liu Tang2,3,*, Xiaozhou Wu4, Jun Wang2,5

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2579-2612, 2025, DOI:10.32604/fdmp.2025.070407 - 30 October 2025

    Abstract This study compares two end-cooling systems, convective–radiant combined cooling (FR+FC) and fan coil convection (FC), through continuous experimental investigations, focusing on the impact of window-to-wall ratio (WWR) on indoor thermal comfort, temperature distribution, humidity, and energy consumption. Results show that increasing WWR amplifies indoor temperature fluctuations. While the overall predicted mean vote (PMV) remains within the Level-II comfort range (−1.0 to +1.0), the FC system exhibits pronounced local PMV gradients near west-facing windows, especially at 80% WWR, where transient PMV reaches 1.26 close to the window, 0.89 higher than at the room center. In contrast, More >

  • Open Access

    ARTICLE

    Integrated Experimental and Numerical Analysis of Particle Migration Effects on Produced Water Reinjection in Offshore Reservoirs

    Mengna Cheng1, Hao Guo2, Feng Cao2, Jie Gong1, Fengshuang Du1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2629-2650, 2025, DOI:10.32604/fdmp.2025.070344 - 30 October 2025

    Abstract Produced water reinjection is a common strategy in offshore oilfield operations, yet the presence of solid particles in produced water can lead to localized formation pressure buildup, increasing the risk of rock fracturing and leakage. In this study, we present an integrated experimental and numerical investigation to quantify the effects of particle migration on formation pressure and the spatial diffusion of injected water. Dynamic plugging experiments were performed to systematically examine the influence of injection rate and injection volume on core permeability. Results demonstrate that higher injection rates substantially reduce permeability, and the derived relationship More >

  • Open Access

    ARTICLE

    Deep Learning-Based Investigation of Multiphase Flow and Heat Transfer in CO2–Water Enhanced Geothermal Systems

    Feng He*, Rui Tan, Songlian Jiang, Chao Qian, Chengzhong Bu, Benqiang Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2557-2577, 2025, DOI:10.32604/fdmp.2025.070186 - 30 October 2025

    Abstract This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide (CO2)–water enhanced geothermal systems (EGS). The model integrates geological parameters, thermal gradients, and control schedules to enable fast and accurate prediction of complex reservoir dynamics. The main contributions are: (i) development of a workflow that couples physics-based reservoir simulation with a Transformer neural network architecture, (ii) design of physics-guided loss functions to enforce conservation of mass and energy, (iii) application of the surrogate model to closed-loop optimization using a differential evolution (DE) algorithm, and (iv) incorporation of economic… More >

  • Open Access

    ARTICLE

    Impact of Proppant Embedding on Long-Term Fracture Conductivity and Shale Gas Production Decline

    Junchen Liu1, Feng Zhou1, Xiaofeng Lu1, Xiaojin Zhou2, Xianjun He1, Yurou Du3, Fuguo Xia1, Junfu Zhang4, Weiyi Luo4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2613-2628, 2025, DOI:10.32604/fdmp.2025.069772 - 30 October 2025

    Abstract In shale gas reservoir stimulation, proppants are essential for sustaining fracture conductivity. However, increasing closing stress causes proppants to embed into the rock matrix, leading to a progressive decline in fracture permeability and conductivity. Furthermore, rock creep contributes to long-term reductions in fracture performance. To elucidate the combined effects of proppant embedding and rock creep on sustained conductivity, this study conducted controlled experiments examining conductivity decay in propped fractures under varying closing stresses, explicitly accounting for both mechanisms. An embedded discrete fracture model was developed to simulate reservoir production under different conductivity decay scenarios, while… More >

  • Open Access

    ARTICLE

    Influence of Aviation Kerosene-Diesel Blending Ratios on Ignition Behavior and Spray Dynamics

    Hailong Chen1,*, Guanzhen Tao1, Daijun Wei2, Guangyao Ouyang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2527-2538, 2025, DOI:10.32604/fdmp.2025.069569 - 30 October 2025

    Abstract Modifications in fuel spray characteristics fundamentally influence fuel–air mixing dynamics in diesel engines, thereby significantly affecting combustion performance and emission profiles. This study explores the operational behavior of RP-5 aviation kerosene/diesel blended fuels in marine diesel engines. A spray visualization platform based on Mie scattering technology was developed to comparatively analyze the spray characteristics, ignition behavior, and soot emissions of RP-5 aviation kerosene, conventional-35# diesel, and their blends at varying mixing ratios (D100H0, D90H10, D70H30, D50H50, D30H70, D0H100). The findings demonstrate that, under constant injection pressure, aviation kerosene combustion results in a more uniform temperature More >

  • Open Access

    ARTICLE

    Optimized Pilot Hydraulic Valves for Urban Water Systems via Enhanced BP-Coati Algorithms

    Shuxun Li1,2, Xinhao Liu1,2,*, Yu Zhang1,2, Yu Zhao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2495-2526, 2025, DOI:10.32604/fdmp.2025.068674 - 30 October 2025

    Abstract Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulating flow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However, conventional valve designs often struggle to maintain effective regulation across a wide range of system pressures. To address this limitation, this study introduces a novel Pilot hydraulic valves specifically engineered for enhanced dynamic performance and precise regulation under variable pressure conditions. Building upon prior experimental findings, the proposed design integrates a high-fidelity simulation framework and a surrogate model-based optimization strategy. The study begins by formulating a comprehensive… More >

Displaying 31-40 on page 4 of 1174. Per Page