Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    The NAC Transcription Factor ANAC089 Modulates Seed Vigor through the ABI5-VTC2 Module in Arabidopsis thaliana

    Yuan Tian, Lulu Zhi, Ping Li*, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1101-1116, 2024, DOI:10.32604/phyton.2024.050220 - 27 June 2024

    Abstract Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production. Long-term storage induces seed viability deterioration or seed aging, accompanied by the accumulation of toxic reactive oxygen species (ROS) to suppress seed germination. Controlled deterioration treatment (CDT) is a general approach for mimicking seed aging. The transcription factor ANAC089 was previously reported to modulate seed primary germination. In this study, we evaluated the ability of ANAC089 to control seed viability during aging. Compared with that in the wild-type line, the mutation of ANAC089 significantly increased HO, thereby reducing seed viability after… More >

  • Open Access

    REVIEW

    SPATULA as a Versatile Tool in Plant: The Progress and Perspectives of SPATULA (SPT) Transcriptional Factor

    Lei Liang, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 517-531, 2024, DOI:10.32604/phyton.2024.049277 - 28 March 2024

    Abstract With the rapid development of modern molecular biology and bioinformatics, many studies have proved that transcription factors play an important role in regulating the growth and development of plants. SPATULA (SPT) belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development. This review systemically summarizes the multiple roles of SPT in plant growth, development, and stress response, including seed germination, flowering, leaf size, carpel development, and root elongation, which is helpful for us to better understand the functions of SPT. More >

  • Open Access

    ARTICLE

    The Cotton GhWRKY91 Gene Negatively Regulates Root Elongation in Overexpressed Transgenic Arabidopsis thaliana

    Yueying Liu#, Yuqing Wang#, Lijiao Gu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 2937-2946, 2023, DOI:10.32604/phyton.2023.043306 - 24 October 2023

    Abstract WRKY transcription factors play important roles in plant growth, development, and stress responses. Our previous research has shown that the GhWRKY91 gene can delay age-, abscisic acid (ABA)-, and drought-induced leaf senescence when overexpressed in transgenic Arabidopsis plants. To explore in more depth the biological functions of the GhWRKY91 gene, we further observed the root growth of overexpressing transgenic Arabidopsis thaliana under ABA and drought treatment. In this study, we transplanted the germinated seeds of wild-type (WT) and three transgenic lines (OE-12, OE-13 and OE-20) to 1/2 MS solid medium containing ABA and different concentrations of mannitol (simulated… More >

  • Open Access

    REVIEW

    Adventitious Root Regeneration: Molecular Basis and Influencing Factors

    Lulu Zhi, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2825-2840, 2023, DOI:10.32604/phyton.2023.030912 - 15 September 2023

    Abstract Plant regeneration is a self-repair of the plant body in response to adverse conditions or damaged structures, and root regeneration allows the plant body to better adapt to its environment by supplementing the roots’ structure. Previous research has shown that adventitious roots can be made to occur from scratch in two ways. Studies that simulate adventitious root regeneration through natural conditions allow the regeneration process to be broadly divided into three stages: the perception of early signals, the massive accumulation of auxin, and the transformation of cell fate. The strength of regeneration, in turn, is More >

  • Open Access

    ARTICLE

    Overexpression of the LcPIN2 and LtPIN2 Gene in Arabidopsis thaliana Promotes Root Elongation

    Zijian Cao#, Guoxia Xue#, Lingfeng Hu, Haoxian Qu, Shuang Liang, Jisen Shi, Jinhui Chen*, Zhaodong Hao*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2383-2397, 2023, DOI:10.32604/phyton.2023.029845 - 25 June 2023

    Abstract The auxin polar transporter, PIN-FORMED 2 (PIN2) plays an important role in root development. However, it remains unclear whether PIN2 genes form two Liriodendron species, L. chinense (LcPIN2) and L. tulipifera (LtPIN2), are both involved in root development and whether and to what extent these two genes diverge in function. Here, we cloned and overexpressed LcPIN2 and LtPIN2 in Arabidopsis thaliana wild-type (WT) and Atpin2 mutant. Phylogenetic and sequence analysis showed a small degree of differentiation between these two Liriodendron PIN2 genes. Tissue-specific gene expression analysis indicated that both Liriodendron PIN2 genes were highly expressed in roots, implying a potential role in root… More >

  • Open Access

    ARTICLE

    Biochemical and Physiological Responses of Arabidopsis thaliana Leaves to Moderate Mechanical Stimulation

    Iva Šutevski1,#, Klara Krmpotić1,#, Sandra Vitko1, Nataša Bauer1, Eva Fancev2, Mario Cifrek2, Željka Vidaković-Cifrek1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 901-920, 2023, DOI:10.32604/phyton.2023.025165 - 29 November 2022

    Abstract Mechanical stimulation of plants can be caused by various abiotic and biotic environmental factors. Apart from the negative consequences, it can also cause positive changes, such as acclimatization of plants to stress conditions. Therefore, it is necessary to study the physiological and biochemical mechanisms underlying the response of plants to mechanical stimulation. Our aim was to evaluate the response of model plant Arabidopsis thaliana to a moderate force of 5 N (newton) for 20 s, which could be compared with the pressure caused by animal movement and weather conditions such as heavy rain. Mechanically stimulated leaves… More >

  • Open Access

    ARTICLE

    Overexpression of a sugarcane ScCaM gene negatively regulates salinity and drought stress responses in transgenic Arabidopsis thaliana

    JINXIAN LIU1, JINGFANG FENG2, CHANG ZHANG2, YONGJUAN REN2, WEIHUA SU2, GUANGHENG WU1, XIANYU FU1, NING HUANG3, YOUXIONG QUE2, HUI LING3,*, JUN LUO2,*

    BIOCELL, Vol.47, No.1, pp. 215-225, 2023, DOI:10.32604/biocell.2022.022477 - 26 September 2022

    Abstract Calmodulin (CaM) proteins play a key role in signal transduction under various stresses. In the present study, the effects of a sugarcane ScCaM gene (NCBI accession number: GQ246454) on drought and salt stress tolerance in transgenic Arabidopsis thaliana and Escherichia coli cells were evaluated. The results demonstrated a significant negative role of ScCaM in the drought and salt stress tolerance of transgenic lines of A. thaliana, as indicated by the phenotypes. In addition, the expression of AtP5CS and AtRD29A, two genes tightly related to stress resistance, was significantly lower in the overexpression lines than in the wild type. The growth More >

  • Open Access

    ARTICLE

    Putrescine Enhances Seed Germination Tolerance to Heat Stress in Arabidopsis thaliana

    Shiyan Lu, Yulan Hu, Yilin Chen, Yaru Yang, Yue Jin, Ping Li*, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1879-1891, 2022, DOI:10.32604/phyton.2022.022605 - 13 May 2022

    Abstract Putrescine (Put) as the compound of plant polyamines is catalyzed by arginine decarboxylase (ADC), which is encoded by two members, ADC1 and ADC2 in Arabidopsis, and ADC2 is mainly responsible for Put biosynthesis. Accumulated evidence demonstrates the important function of Put in plant growth and development, but its role in regulating seed germination under high temperature (HT) has not been reported yet. SOMNUS (SOM) is the negative regulator for seed germination thermoinhibition by altering downstream gibberellin (GA) and abscisic acid (ABA) metabolism. In this study, we found exogenous application of Put obviously alleviated the inhibition effect… More >

  • Open Access

    ARTICLE

    Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza

    XIN LI1, JIANMIN PAN1, FAISAL ISLAM2, JUANJUAN LI1, ZHUONI HOU1, ZONGQI YANG1, LING XU1,*

    BIOCELL, Vol.46, No.8, pp. 1947-1958, 2022, DOI:10.32604/biocell.2022.019806 - 22 April 2022

    Abstract NAC (NAM, ATAF, CUC) is a class of transcription factors involved in plant growth regulation, abiotic stress responses, morphogenesis and metabolism. Salvia miltiorrhiza is an important Chinese medicinal herb, but the characterization of NAC genes in this species is limited. In this study, based on the Salvia miltiorrhiza genomic databases, 82 NAC transcription factors were identified, which were divided into 14 groups. Meanwhile, phylogenetic analysis, gene structure, chromosomal localization and potential role of SmNACs in abiotic stress conditions were also studied. The results revealed that some SmNACs had different structures than others, which advised that these genes may have multiple/distinct More >

  • Open Access

    ARTICLE

    Development of a New Cold-Tolerant Maize (Zea mays L.) Germplasm Using the ICE1 Gene from Arabidopsis thaliana

    Jing Qu1, Shuang Liu2, Peng Jiao2, Zhenzhong Jiang2, Jianbo Fei2, Shuyan Guan1,*, Yiyong Ma1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.8, pp. 1709-1719, 2022, DOI:10.32604/phyton.2022.018854 - 14 April 2022

    Abstract To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations.… More >

Displaying 1-10 on page 1 of 15. Per Page