Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (769)
  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    REVIEW

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

    Samira Rastbod1, Mehdi Jahangiri2,*, Behrang Moradi1, Haleh Nazari1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070089 - 27 December 2025

    Abstract Curtain wall systems have evolved from aesthetic façade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness. This review presents a comprehensive examination of curtain walls from an energy-engineering perspective, highlighting their structural typologies (Stick and Unitized), material configurations, and integration with smart technologies such as electrochromic glazing, parametric design algorithms, and Building Management Systems (BMS). The study explores the thermal, acoustic, and solar performance of curtain walls across various climatic zones, supported by comparative analyses and iconic case studies including Apple Park, Burj Khalifa, and Milad Tower. Key challenges—including… More > Graphic Abstract

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Enhanced Image Captioning via Integrated Wavelet Convolution and MobileNet V3 Architecture

    Mo Hou1,2,3,#,*, Bin Xu4,#, Wen Shang1,2,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071282 - 09 December 2025

    Abstract Image captioning, a pivotal research area at the intersection of image understanding, artificial intelligence, and linguistics, aims to generate natural language descriptions for images. This paper proposes an efficient image captioning model named Mob-IMWTC, which integrates improved wavelet convolution (IMWTC) with an enhanced MobileNet V3 architecture. The enhanced MobileNet V3 integrates a transformer encoder as its encoding module and a transformer decoder as its decoding module. This innovative neural network significantly reduces the memory space required and model training time, while maintaining a high level of accuracy in generating image descriptions. IMWTC facilitates large receptive… More >

  • Open Access

    ARTICLE

    Research on Automated Game QA Reporting Based on Natural Language Captions

    Jun Myeong Kim, Jang Young Jeong, Shin Jin Kang, Beomjoo Seo*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071084 - 09 December 2025

    Abstract Game Quality Assurance (QA) currently relies heavily on manual testing, a process that is both costly and time-consuming. Traditional script- and log-based automation tools are limited in their ability to detect unpredictable visual bugs, especially those that are context-dependent or graphical in nature. As a result, many issues go unnoticed during manual QA, which reduces overall game quality, degrades the user experience, and creates inefficiencies throughout the development cycle. This study proposes two approaches to address these challenges. The first leverages a Large Language Model (LLM) to directly analyze gameplay videos, detect visual bugs, and… More >

  • Open Access

    ARTICLE

    ResghostNet: Boosting GhostNet with Residual Connections and Adaptive-SE Blocks

    Yuang Chen1,2, Yong Li1,*, Fang Lin1,2, Shuhan Lv1,2, Jiaze Jiang1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070990 - 09 December 2025

    Abstract Aiming at the problem of potential information noise introduced during the generation of ghost feature maps in GhostNet, this paper proposes a novel lightweight neural network model called ResghostNet. This model constructs the Resghost Module by combining residual connections and Adaptive-SE Blocks, which enhances the quality of generated feature maps through direct propagation of original input information and selection of important channels before cheap operations. Specifically, ResghostNet introduces residual connections on the basis of the Ghost Module to optimize the information flow, and designs a weight self-attention mechanism combined with SE blocks to enhance feature More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    ARTICLE

    Dynamic Adaptive Weighting of Effectiveness Assessment Indicators: Integrating G1, CRITIC and PIVW

    Longyue Li1, Guoqing Zhang1, Bo Cao1, Shuqi Wang2, Ye Tian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.070622 - 09 December 2025

    Abstract Modern battlefields exhibit high dynamism, where traditional static weighting methods in combat effectiveness assessment fail to capture real-time changes in indicator values, leading to limited assessment accuracy—especially critical in scenarios like sudden electronic warfare or degraded command, where static weights cannot reflect the operational value decay or surge of key indicators. To address this issue, this study proposes a dynamic adaptive weighting method for evaluation indicators based on G1-CRITIC-PIVW. First, the G1 (Sequential Relationship Analysis Method) subjective weighting method—translates expert knowledge into indicator importance rankings—leverages expert knowledge to quantify the relative importance of indicators via… More >

  • Open Access

    ARTICLE

    A Multi-Objective Adaptive Car-Following Framework for Autonomous Connected Vehicles with Deep Reinforcement Learning

    Abu Tayab1,*, Yanwen Li1, Ahmad Syed2, Ghanshyam G. Tejani3,4,*, Doaa Sami Khafaga5, El-Sayed M. El-kenawy6, Amel Ali Alhussan7, Marwa M. Eid8,9

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070583 - 09 December 2025

    Abstract Autonomous connected vehicles (ACV) involve advanced control strategies to effectively balance safety, efficiency, energy consumption, and passenger comfort. This research introduces a deep reinforcement learning (DRL)-based car-following (CF) framework employing the Deep Deterministic Policy Gradient (DDPG) algorithm, which integrates a multi-objective reward function that balances the four goals while maintaining safe policy learning. Utilizing real-world driving data from the highD dataset, the proposed model learns adaptive speed control policies suitable for dynamic traffic scenarios. The performance of the DRL-based model is evaluated against a traditional model predictive control-adaptive cruise control (MPC-ACC) controller. Results show that the… More >

  • Open Access

    ARTICLE

    FishTracker: An Efficient Multi-Object Tracking Algorithm for Fish Monitoring in a RAS Environment

    Yuqiang Wu1,2, Zhao Ji1, Guanqi You1, Zihan Zhang1, Chaoping Lu3, Huanliang Xu1, Zhaoyu Zhai1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.070414 - 09 December 2025

    Abstract Understanding fish movement trajectories in aquaculture is essential for practical applications, such as disease warning, feeding optimization, and breeding management. These trajectories reveal key information about the fish’s behavior, health, and environmental adaptability. However, when multi-object tracking (MOT) algorithms are applied to the high-density aquaculture environment, occlusion and overlapping among fish may result in missed detections, false detections, and identity switching problems, which limit the tracking accuracy. To address these issues, this paper proposes FishTracker, a MOT algorithm, by utilizing a Tracking-by-Detection framework. First, the neck part of the YOLOv8 model is enhanced by introducing… More >

Displaying 1-10 on page 1 of 769. Per Page