Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,782)
  • Open Access

    ARTICLE

    Securing Cloud-Encrypted Data: Detecting Ransomware-as-a-Service (RaaS) Attacks through Deep Learning Ensemble

    Amardeep Singh1, Hamad Ali Abosaq2, Saad Arif3, Zohaib Mushtaq4,*, Muhammad Irfan5, Ghulam Abbas6, Arshad Ali7, Alanoud Al Mazroa8

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 857-873, 2024, DOI:10.32604/cmc.2024.048036

    Abstract Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries, especially in light of the growing number of cybersecurity threats. A major and ever-present threat is Ransomware-as-a-Service (RaaS) assaults, which enable even individuals with minimal technical knowledge to conduct ransomware operations. This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models. For this purpose, the network intrusion detection dataset “UNSW-NB15” from the Intelligent Security Group of the University of New South Wales, Australia is analyzed. In the initial phase, the rectified linear… More >

  • Open Access

    ARTICLE

    Collaborative Charging Scheduling in Wireless Charging Sensor Networks

    Qiuyang Wang, Zhen Xu*, Lei Yang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1613-1630, 2024, DOI:10.32604/cmc.2024.047915

    Abstract Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides a promising solution to this problem, which is not easily affected by the external environment. In this paper, we study the recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers (MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with the objective of maximizing the number of surviving sensors, and further propose a collaborative charging scheduling algorithm (CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors. Two MCs… More >

  • Open Access

    ARTICLE

    A Novel Insertion Solution for the Travelling Salesman Problem

    Emmanuel Oluwatobi Asani1,2,3, Aderemi Elisha Okeyinka4, Sunday Adeola Ajagbe5,6, Ayodele Ariyo Adebiyi1, Roseline Oluwaseun Ogundokun1,2,7,*, Temitope Samson Adekunle8, Pragasen Mudali5, Matthew Olusegun Adigun5

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1581-1597, 2024, DOI:10.32604/cmc.2024.047898

    Abstract The study presents the Half Max Insertion Heuristic (HMIH) as a novel approach to solving the Travelling Salesman Problem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) and Nearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics, focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative that minimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting with an initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half… More >

  • Open Access

    ARTICLE

    A Lightweight, Searchable, and Controllable EMR Sharing Scheme

    Xiaohui Yang, Peiyin Zhao*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1521-1538, 2024, DOI:10.32604/cmc.2024.047666

    Abstract Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer from privacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharing scheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computational overhead of encryption and decryption reaches a lightweight constant level, and supports keyword search and policy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technology is utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the data to achieve controllability of… More >

  • Open Access

    ARTICLE

    An Ingenious IoT Based Crop Prediction System Using ML and EL

    Shabana Ramzan1, Yazeed Yasin Ghadi2, Hanan Aljuaid3, Aqsa Mahmood1,*, Basharat Ali4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 183-199, 2024, DOI:10.32604/cmc.2024.047603

    Abstract Traditional farming procedures are time-consuming and expensive as based on manual labor. Farmers have no proper knowledge to select which crop is suitable to grow according to the environmental factors and soil characteristics. This is the main reason for the low yield of crops and the economic crisis in the agricultural sector of the different countries. The use of modern technologies such as the Internet of Things (IoT), machine learning, and ensemble learning can facilitate farmers to observe different factors such as soil electrical conductivity (EC), and environmental factors like temperature to improve crop yield. These parameters play a vital… More >

  • Open Access

    ARTICLE

    A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects

    Xiao Lu1,*, Chengling Jiang1, Zhoujun Ma1, Haitao Li2, Yuexin Liu2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 373-390, 2024, DOI:10.32604/cmc.2024.047469

    Abstract Insulator defect detection plays a vital role in maintaining the secure operation of power systems. To address the issues of the difficulty of detecting small objects and missing objects due to the small scale, variable scale, and fuzzy edge morphology of insulator defects, we construct an insulator dataset with 1600 samples containing flashovers and breakages. Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed. Firstly, a high-resolution feature map is introduced and a small object prediction layer is added so that the model can detect tiny objects. Secondly, a simplified… More >

  • Open Access

    ARTICLE

    Double DQN Method For Botnet Traffic Detection System

    Yutao Hu1, Yuntao Zhao1,*, Yongxin Feng2, Xiangyu Ma1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 509-530, 2024, DOI:10.32604/cmc.2024.042216

    Abstract In the face of the increasingly severe Botnet problem on the Internet, how to effectively detect Botnet traffic in real-time has become a critical problem. Although the existing deep Q network (DQN) algorithm in Deep reinforcement learning can solve the problem of real-time updating, its prediction results are always higher than the actual results. In Botnet traffic detection, although it performs well in the training set, the accuracy rate of predicting traffic is as high as%; however, in the test set, its accuracy has declined, and it is impossible to adjust its prediction strategy on time based on new data… More >

  • Open Access

    ARTICLE

    Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables

    Liang Chen1, Jingbo Zhang1, Linjie Wu1, Xingjuan Cai1,2,*, Yubin Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 363-383, 2024, DOI:10.32604/cmes.2024.049044

    Abstract The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects; hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based on the interactions among different decision variables. If the size of a group surpasses the set… More >

  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations… More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization of… More >

Displaying 31-40 on page 4 of 2782. Per Page