Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Computer Simulations of Atherosclerotic Plaque Growth in Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 193-202, 2010, DOI:10.3970/mcb.2010.007.193

    Abstract A three dimensional mathematical model with a linear plaque growth function was developed to investigate the geometrical adaptation of atherosclerotic plaques in coronary arteries and study the influences of flow wall shear stress (WSS), blood viscosity and the inlet flow rate on the growth of atherosclerotic plaques using computational plaque growth simulations. The simulation results indicated that the plaque wall thickness at the neck of the stenosis increased at a decreasing rate in the atherosclerosis progression. The simulation results also showed a strong dependence of the plaque wall thickness increase on the blood viscosity and More >

  • Open Access

    ABSTRACT

    Motion of individual cells in high hematocrit blood flow in micro-channels

    T. Ishikawa1, H. Fujiwara1, N. Matsuki2, R. Lima3, Y. Imai1, T. Yamaguchi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.2, pp. 77-78, 2009, DOI:10.3970/icces.2009.009.077

    Abstract In a small artery, the blood is no longer assumed as a homogeneous fluid, because the size of blood cells cannot be neglected compared to the generated flow field. In such a case, we need to treat the blood as a multi-phase fluid, and investigate the motion of individual cells in discussing the flow field. Blood may be modelled as a suspension of red blood cells (RBCs) in plasma, because about 99% of volume fraction of blood cells is RBCs.
    In order to measure a blood flow experimentally, various methods have been employed. However, most of… More >

  • Open Access

    ARTICLE

    Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data

    Xueying Huang*, Chun Yang, Chun Yuan, Fei Liu, Gador Canton, Jie Zheng§, Pamela K. Woodard§, Gregorio A. Sicard, Dalin Tang||

    Molecular & Cellular Biomechanics, Vol.6, No.2, pp. 121-134, 2009, DOI:10.3970/mcb.2009.006.121

    Abstract Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress… More >

  • Open Access

    ARTICLE

    Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach

    Chun Yang∗,†, Dalin Tang∗,‡, Shunichi Kobayashi§, Jie Zheng, Pamela K. Woodard§, Zhongzhao Teng*, Richard Bach||, David N. Ku∗∗

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 259-274, 2008, DOI:10.3970/mcb.2008.005.259

    Abstract Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI… More >

  • Open Access

    ARTICLE

    Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence

    Jin Suo*, John N. Oshinski∗,†, D.P. Giddens∗,‡

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 9-18, 2008, DOI:10.3970/mcb.2008.005.009

    Abstract Atherosclerotic plaques in human coronary arteries are focal manifestations of systemic disease, and biomechanical factors have been hypothesized to contribute to plaque genesis and localization. We developed a computational fluid dynamics (CFD) model of the ascending aorta and proximal sections of the right and left coronary arteries of a normal human subject using computed tomography (CT) and magnetic resonance imaging (MRI) and determined the pulsatile flow field. Results demonstrate that flow patterns in the ascending aorta contribute to a pro-atherosclerotic flow environment, specifically through localization of low and oscillatory wall shear stress in the neighborhood… More >

  • Open Access

    ARTICLE

    In Vitro Measurement and Calculation of Drag Force on Iliac Limb Stentgraft in a Compliant Arterial Wall Model

    A. Sinha Roy*, K. West, R. S. Rontala1, R. K. Greenberg2, R. K. Banerje1,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 211-226, 2007, DOI:10.3970/mcb.2007.004.211

    Abstract Interventional treatment of aortic aneurysms using endovascular stentgrafting is a minimally invasive technique. Following device implantation, transient drag forces act on the stentgraft. When the drag force exceeds the fixation force, complications like stentgraft migration, endoleaks and stentgraft failure occur. In such a scenario the device becomes unstable, causing concern over the long-term durability of endovascular repairs. The objective of this study is: 1) to measure the drag force on iliac limb stentgraft, having a distal diameter that is half the size of the proximal end, in an in vitro experiment; 2) to calculate the drag… More >

  • Open Access

    ARTICLE

    In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models

    Chun Yang1, Dalin Tang2, Chun Yuan3, Thomas S. Hatsukami4, Jie Zheng5, Pamela K. Woodard5

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.3, pp. 233-246, 2007, DOI:10.3970/cmes.2007.019.233

    Abstract It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic,… More >

  • Open Access

    ARTICLE

    Modeling of Surface-Tension-Driven Flow of Blood in Capillary Tubes

    Jun Wang1, Wei Huang2, Raghbir S. Bhullar3, Pin Tong2

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 161-168, 2004, DOI:10.3970/mcb.2004.001.161

    Abstract Surface-tension-driven blood flow into a capillary tube, as in some medical devices, is studied. In a previous article, we considered the early stages of the entry flow from a drop of blood into a capillary, and solved the problem analytically under the assumption that the resistance of the air is negligible. In the present note we consider a capillary tube of finite length, with the far end containing a small window which opens to the atmosphere. The dynamic reverberation of the air in the capillary tube is analyzed in conjunction with the dynamics of the… More >

  • Open Access

    ARTICLE

    A Micromechanical Theory of Flow in Pulmonary Alveolar Sheet

    Z. Zhong1, Y. Dai1,2, C. C. Mei3, P. Tong1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 77-86, 2002, DOI:10.3970/cmes.2002.003.077

    Abstract In this paper we reexamine the sheet-flow model proposed by Fung and Sobin (1969) for blood flow in capillaries in the pulmonary alveoli from micromechanical point of view. The pulmonary alveolar capillary is assumed to be two parallel membranes connected by periodic tissue posts. Blood is spread out into the very thin layer or sheet between the two membranes. The pulmonary alveolar sheet thus has a microstructure of hexagonal cells. A two-scale theory of homogenization is used to establish the canonical equations for the unit cell. The microscale solution is obtained by means of finite… More >

Displaying 31-40 on page 4 of 39. Per Page