Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,402)
  • Open Access

    ARTICLE

    A Distributed Covert Channel of the Packet Ordering Enhancement Model Based on Data Compression

    Lejun Zhang1, Tianwen Huang1, Xiaoyan Hu1, Zhijie Zhang1, Weizheng Wang2, Donghai Guan3, *, Chunhui Zhao1, 4, Seokhoon Kim5

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 2013-2030, 2020, DOI:10.32604/cmc.2020.011219 - 30 June 2020

    Abstract Covert channel of the packet ordering is a hot research topic. Encryption technology is not enough to protect the security of both sides of communication. Covert channel needs to hide the transmission data and protect content of communication. The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator. However, because the establishment of proxy communication needs to consume traffic, the communication capacity will be reduced, and in recent years, the tor technology often has vulnerabilities that led to the leakage of secret information. In… More >

  • Open Access

    ARTICLE

    A Recommendation Approach Based on Bayesian Networks for Clone Refactor

    Ye Zhai1, *, Dongsheng Liu1, Celimuge Wu2, Rongrong She1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1999-2012, 2020, DOI:10.32604/cmc.2020.09950 - 30 June 2020

    Abstract Reusing code fragments by copying and pasting them with or without minor adaptation is a common activity in software development. As a result, software systems often contain sections of code that are very similar, called code clones. Code clones are beneficial in reducing software development costs and development risks. However, recent studies have indicated some negative impacts as a result. In order to effectively manage and utilize the clones, we design an approach for recommending refactoring clones based on a Bayesian network. Firstly, clone codes are detected from the source code. Secondly, the clones that More >

  • Open Access

    ARTICLE

    A Recommendation Method for Highly Sparse Dataset Based on Teaching Recommendation Factorization Machines

    Dunhong Yao1, 2, 3, Shijun Li4, *, Ang Li5, Yu Chen6

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1959-1975, 2020, DOI:10.32604/cmc.2020.010186 - 30 June 2020

    Abstract There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses. To solve the practical problem, we firstly give a series of normalization models for defining the key attributes of teachers’ professional foundation, course difficulty coefficient, and comprehensive evaluation of teaching. Then, we define a partial weight function to calculate the key attributes, and obtain the partial recommendation values. Next, we construct a highly sparse Teaching Recommendation Factorization Machines (TRFMs) model, which takes the 5-tuples relation including teacher, course, teachers’ professional foundation, course difficulty, teaching evaluation as the feature vector, and… More >

  • Open Access

    ARTICLE

    Research on Vehicle Routing Problem with Soft Time Windows Based on Hybrid Tabu Search and Scatter Search Algorithm

    Jinhui Ge1, Xiaoliang Liu2, *, Guo Liang3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1945-1958, 2020, DOI:10.32604/cmc.2020.010977 - 30 June 2020

    Abstract With the expansion of the application scope of social computing problems, many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes, cultures, and the emotional needs of customers. The actual soft time window vehicle routing problem, speeding up the response of customer needs, improving distribution efficiency, and reducing operating costs is the focus of current social computing problems. Therefore, designing fast and effective algorithms to solve this problem has certain theoretical and practical significance. In this paper, considering the time delay… More >

  • Open Access

    ARTICLE

    Improving Chinese Word Representation with Conceptual Semantics

    Tingxin Wei1, 2, Weiguang Qu2, 3, *, Junsheng Zhou3, Yunfei Long4, Yanhui Gu3, Zhentao Xia3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1897-1913, 2020, DOI:10.32604/cmc.2020.010813 - 30 June 2020

    Abstract The meaning of a word includes a conceptual meaning and a distributive meaning. Word embedding based on distribution suffers from insufficient conceptual semantic representation caused by data sparsity, especially for low-frequency words. In knowledge bases, manually annotated semantic knowledge is stable and the essential attributes of words are accurately denoted. In this paper, we propose a Conceptual Semantics Enhanced Word Representation (CEWR) model, computing the synset embedding and hypernym embedding of Chinese words based on the Tongyici Cilin thesaurus, and aggregating it with distributed word representation to have both distributed information and the conceptual meaning More >

  • Open Access

    ARTICLE

    Chinese Spirits Identification Model Based on Mid-Infrared Spectrum

    Wu Zeng1, Zhanxiong Huo1, *, Yuxuan Xie2, Yingxiang Jiang1, Kun Hu1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1869-1883, 2020, DOI:10.32604/cmc.2020.010139 - 30 June 2020

    Abstract Applying computer technology to the field of food safety, and how to identify liquor quickly and accurately, is of vital importance and has become a research focus. In this paper, sparse principal component analysis (SPCA) was applied to seek sparse factors of the mid-infrared (MIR) spectra of five famous vintage year Chinese spirits. The results showed while meeting the maximum explained variance, 23 sparse principal components (PCs) were selected as features in a support vector machine (SVM) model, which obtained a 97% classification accuracy. By comparison principal component analysis (PCA) selected 10 PCs as features More >

  • Open Access

    ARTICLE

    Adversarial Attacks on Content-Based Filtering Journal Recommender Systems

    Zhaoquan Gu1, Yinyin Cai1, Sheng Wang1, Mohan Li1, *, Jing Qiu1, Shen Su1, Xiaojiang Du1, Zhihong Tian1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1755-1770, 2020, DOI:10.32604/cmc.2020.010739 - 30 June 2020

    Abstract Recommender systems are very useful for people to explore what they really need. Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers. In order to improve the efficiency of selecting the most suitable journals for publishing their works, journal recommender systems (JRS) can automatically provide a small number of candidate journals based on key information such as the title and the abstract. However, users or journal owners may attack the system for their own purposes. In this paper, we discuss about the adversarial attacks More >

  • Open Access

    ARTICLE

    Applying Feature-Weighted Gradient Decent K-Nearest Neighbor to Select Promising Projects for Scientific Funding

    Chuqing Zhang1, Jiangyuan Yao2, *, Guangwu Hu3, Thomas Schøtt4

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1741-1753, 2020, DOI:10.32604/cmc.2020.010306 - 30 June 2020

    Abstract Due to its outstanding ability in processing large quantity and high-dimensional data, machine learning models have been used in many cases, such as pattern recognition, classification, spam filtering, data mining and forecasting. As an outstanding machine learning algorithm, K-Nearest Neighbor (KNN) has been widely used in different situations, yet in selecting qualified applicants for winning a funding is almost new. The major problem lies in how to accurately determine the importance of attributes. In this paper, we propose a Feature-weighted Gradient Decent K-Nearest Neighbor (FGDKNN) method to classify funding applicants in to two types: approved More >

  • Open Access

    ARTICLE

    A Secure Three-Factor Authenticated Key Agreement Scheme for Multi-Server Environment

    Meichen Xia1, *, Shiliang Li1,, Liu Liu2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1673-1689, 2020, DOI:10.32604/cmc.2020.010177 - 30 June 2020

    Abstract Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years. However, traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service. Moreover, it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party. In order to overcome these difficulties, we designed a secure threefactor multi-server authenticated key agreement protocol based on elliptic More >

  • Open Access

    ARTICLE

    A DRL-Based Container Placement Scheme with Auxiliary Tasks

    Ningcheng Yuan1, Chao Jia2, *, Jizhao Lu3, Shaoyong Guo1, Wencui Li3, Xuesong Qiu1, Lei Shi4

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1657-1671, 2020, DOI:10.32604/cmc.2020.09840 - 30 June 2020

    Abstract Container is an emerging virtualization technology and widely adopted in the cloud to provide services because of its lightweight, flexible, isolated and highly portable properties. Cloud services are often instantiated as clusters of interconnected containers. Due to the stochastic service arrival and complicated cloud environment, it is challenging to achieve an optimal container placement (CP) scheme. We propose to leverage Deep Reinforcement Learning (DRL) for solving CP problem, which is able to learn from experience interacting with the environment and does not rely on mathematical model or prior knowledge. However, applying DRL method directly dose… More >

Displaying 9571-9580 on page 958 of 13402. Per Page