Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9,651)
  • Open Access

    ARTICLE

    Influence of Scale Specific Features on the Progressive Damage of Woven Ceramic Matrix Composites (CMCs)

    K. C. Liu1, S. M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 35-65, 2013, DOI:10.3970/cmc.2013.035.035

    Abstract It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of many of these scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs).… More >

  • Open Access

    ARTICLE

    A Novel Approach to Modeling of Interfacial Fiber/Matrix Cyclic Debonding

    Paria Naghipour1, Evan J. Pineda2, Steven M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 17-33, 2013, DOI:10.3970/cmc.2013.035.017

    Abstract The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses with applied load cycles was achieved via progressive evolution of the interfacial compliance A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained… More >

  • Open Access

    ARTICLE

    A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes due to Ply Cracking in Composite Laminates

    Chandra Veer Singh1,*

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 227-249, 2013, DOI:10.3970/cmc.2013.034.227

    Abstract A non-linear damage model is developed for the prediction of stiffness degradation in composite laminates due to transverse matrix cracking. The model follows the framework of a recently developed synergistic damage mechanics (SDM) approach which combines the strengths of micro-damage mechanics and continuum damage mechanics (CDM) through the so-called constraint parameters. A common limitation of the current CDM and SDM models has been the tendency to over-predict stiffness changes at high crack densities due to linearity inherent in their stiffness-damage relationships. The present paper extends this SDM approach by including higher order damage terms in the characterization of ply cracking… More >

  • Open Access

    ARTICLE

    Shape-Based Approach for Full Field Displacement Calculation of Cellular Materials

    Yi Xiao1, Qing H. Qin1

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 95-115, 2013, DOI:10.3970/cmc.2013.034.095

    Abstract In this paper, we propose a new approach of optical full-field measurement for displacement calculation on the surface of a cellular solid. Cell boundary points are sampled as nodes in the analysis. To find the nodal values of displacements the nodes are to be mapped onto their corresponding points in the deformed cell boundary by shape based point matching. A thin plate spline based robust point matching (TPS-RPM) approach is used instead of correlation of intensity pattern between two regions in traditional displacement measurement methods. The proposed approach involves multiple-step image processing including cell region segmentation, cell region matching and… More >

  • Open Access

    ARTICLE

    A Theoretical Analysis on Elastic and Elastoplastic Stress Solutions for Functionally Graded Materials Using Averaging Technique of Composites

    Bingfei Liu1, Guansuo Dui2,3, Benming Xie1, Libiao Xin3, Lijun Xue3

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 83-94, 2013, DOI:10.3970/cmc.2013.034.083

    Abstract Functionally Graded Materials (FGMs) are being used in an everexpanding set of applications. For better applications, an analytical methodology using averaging technique of composites is developed to describe the thermo-elastic and thermo-elastoplastic behaviors of a three-layered FGM system subjected to thermal loading Solutions using averaging technique of composites for the stress distributions in a generic FGM system subjected to arbitrary temperature loading conditions are presented. The power-law strain hardening behaviour is assumed for the FGM metallic phase and the stress of the metallic phase are calculated to judge the plastic in this work The stress distributions within the FGM systems… More >

  • Open Access

    ARTICLE

    An RMVT-Based Finite Rectangular Prism Method for the 3D Analysis of Sandwich FGM Plates with Various Boundary Conditions

    Chih-Ping Wu1,2, Hao-Yuan Li1

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 27-62, 2013, DOI:10.3970/cmc.2013.034.027

    Abstract A Reissner's mixed variational theorem (RMVT)-based finite rectangular prism method (FRPM) is developed for the three-dimensional (3D) analysis of sandwich functionally graded material (FGM) plates subjected to mechanical loads, in which the edge conditions of the plates are such that one pair of opposite edges is simply supported and the other pair may be combinations of free, clamped or simply supported edges. The sandwich FGM plate considered consists of two thin and stiff homogeneous material face sheets combined with an embedded thick and soft FGM core, the material properties of which are assumed to obey the powerlaw distributions of the… More >

  • Open Access

    ARTICLE

    Non-Deterministic Structural Response and Reliability Analysis Using a Hybrid Perturbation-Based Stochastic Finite Element and Quasi-Monte Carlo Method

    C. Wang1, W. Gao1, C.W. Yang1, C.M. Song1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 19-46, 2011, DOI:10.3970/cmc.2011.025.019

    Abstract The random interval response and probabilistic interval reliability of structures with a mixture of random and interval properties are studied in this paper. Structural stiffness matrix is a random interval matrix if some structural parameters and loads are modeled as random variables and the others are considered as interval variables. The perturbation-based stochastic finite element method and random interval moment method are employed to develop the expressions for the mean value and standard deviation of random interval structural displacement and stress responses. The lower bound and upper bound of the mean value and standard deviation of random interval structural responses… More >

  • Open Access

    ARTICLE

    Fracture Mechanics Based Model for Fatigue Remaining Life Prediction of RC beams Considering Corrosion Effects

    A Rama Chandra Murthy1, Smitha Gopinath1,2, Ashish Shrivastav1, G. S. Palani1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 1-18, 2011, DOI:10.3970/cmc.2011.025.001

    Abstract This paper presents methodologies for crack growth study and fatigue remaining life prediction of reinforced concrete structural components accounting for the corrosion effects. Stress intensity factor (SIF) has been computed by using the principle of superposition. At each incremental crack length, net SIF has been computed as the difference of SIF of plain concrete and reinforcement. The behaviour of reinforcement has been considered as elasto-plastic. Uniform corrosion rate has been assumed in the modeling. Corrosion effect has been accounted in the form of reduction in the diameter and modulus of elasticity of steel. Numerical studies have been carried out to… More >

  • Open Access

    ARTICLE

    A New Quasi-Boundary Scheme for Three-Dimensional Backward Heat Conduction Problems

    Chih-Wen Chang1

    CMC-Computers, Materials & Continua, Vol.24, No.3, pp. 209-238, 2011, DOI:10.3970/cmc.2011.024.209

    Abstract In this study, we employ a semi-analytical scheme to resolve the three-dimensional backward heat conduction problem (BHCP) by utilizing a quasi-bound -ary concept. First, the Fourier series expansion method is used to estimate the temperature field u(x, y, z, t) at any time t < T. Second, we ponder a direct regularization by adding an extra term a(x, y, z, 0) to transform a second-kind Fredholm integral equation for u(x, y, z, 0). The termwise separable property of the kernel function allows us to acquire a closed-form regularized solution. In addition, a tactic to determine the regularization parameter is recommended.… More >

  • Open Access

    ARTICLE

    Vibration and Buckling of Truss Core Sandwich Plates on An Elastic Foundation Subjected to Biaxial In-plane Loads

    J.W. Chen1, W. Liu1, X.Y. Su1,2

    CMC-Computers, Materials & Continua, Vol.24, No.2, pp. 163-182, 2011, DOI:10.3970/cmc.2011.024.163

    Abstract Truss-core sandwich plates are thin-walled structures comprising a truss core and two thin flat sheets. Since no direct analytical solution for the dynamic response of such structures exists, the complex three dimensional (3D) systems are idealized as equivalent 2D homogeneous continuous plates. The macroscopic effective bending and transverse shear stiffness are derived. Two representative core topologies are considered: pyramidal truss core and tetrahedral truss core. The first order shear deformation theory is used to study the flexural vibration of a simply supported sandwich plate. The buckling of the truss core plate on an elastic foundation subjected to biaxial in-plane compressive… More >

Displaying 9581-9590 on page 959 of 9651. Per Page