Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (129)
  • Open Access

    REVIEW

    How is the AKT/mTOR pathway involved in cell migration and invasion?

    JINGYAO XU1,#, SHUANGLI HAO1,#, KAIYUE HAN1,#, WANXI YANG1,*, HONG DENG2,*

    BIOCELL, Vol.47, No.4, pp. 773-788, 2023, DOI:10.32604/biocell.2023.026618

    Abstract As a pathway that plays a role in nutrient absorption, anabolic response, cell growth and survival, the important role of AKT/mTOR in tumorigenesis has also come to light. For cancer patients, most deaths are caused by the growth of metastatic tumors outside the primary focus. Therefore, migration and invasion in the late stage of tumor progression are the main unresolved issues in the study of tumor pathogenesis, and AKT/mTOR has been found to participate in the migration and invasion of cancer cells, which means that the study of this pathway may contribute to a solution for the problem. Because of… More >

  • Open Access

    REVIEW

    The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment

    JIATENG ZHONG1,2, JINGYU GUO1, XINYU ZHANG1, SHUANG FENG1, WENYU DI2, YANLING WANG3,*, HUIFANG ZHU1,*

    Oncology Research, Vol.30, No.5, pp. 231-242, 2022, DOI:10.32604/or.2022.027900

    Abstract Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In… More >

  • Open Access

    VIEWPOINT

    Galectins dysregulation: A way for cancer cells to invade and pervade

    MAHMOUD M. ABDELFATTAH1, REHAM HELWA1,2,*

    Oncology Research, Vol.30, No.3, pp. 129-135, 2022, DOI:10.32604/or.2022.026838

    Abstract Galectins are sticky molecules that bind to β-galactoside. Their interactions render them essential players in many cellular processes. The imbalance of galectin expression was reported in many diseases. In cancer, galectins interact with the extracellular matrix, evade the immune system, and potentially have broad interactions with blood components. In the last ten years, since 2010, we did focus on galectin research in different cancer types. Our findings showed an interaction between cancer cells and erythrocytes via galectin-4. Moreover, we found that upregulation of galectins was associated with lymph node metastasis in ovarian cancers. Hence, with this, we shortly review some… More >

  • Open Access

    ARTICLE

    MiR-194-5p suppresses the warburg effect in ovarian cancer cells through the IGF1R/PI3K/AKT axis

    LIJUN DU1, KAIKAI DOU1, NIANHAI LIANG1,2, JIANMIN SUN1, RU BAI1,*

    BIOCELL, Vol.47, No.3, pp. 547-554, 2023, DOI:10.32604/biocell.2023.025048

    Abstract Background: The Warburg effect is considered as a hallmark of various types of cancers, while the regulatory mechanism is poorly understood. Our previous study demonstrated that miR-194-5p directly targets and regulates insulin-like growth factor1 receptor (IGF1R). In this study, we aimed to investigate the role of miR-194-5p in the regulation of the Warburg effect in ovarian cancer cells. Methods: The stable ovarian cell lines with miR-194-5p overexpression or silencing IGF1R expression were established by lentivirus infection. ATP generation, glucose uptake, lactate production and extracellular acidification rate (ECAR) assay were used to analyze the effects of aerobic glycolysis in ovarian cancer… More >

  • Open Access

    VIEWPOINT

    DNA polymerase θ (POLQ): A druggable DNA polymerase for homologous recombination-deficient cancer cells

    MERAN KESHAWA EDIRIWEERA*

    BIOCELL, Vol.47, No.3, pp. 441-444, 2023, DOI: 10.32604/biocell.2023.025747

    Abstract Irregularities in the DNA repair pathways are frequently observed in cancer. Dysregulated DNA repair pathways support growth advantages to tumor cells. DNA polymerase-theta (POLQ) is an error-prone DNA polymerase involved in double-strand break repair through microhomology-mediated end joining (MMEJ). POLQ also mediates translesion DNA synthesis and it is largely not expressed in normal cells. POLQ is overexpressed in a range of cancer cells, including homologous recombination (HR) deficient cancer cells. In HR deficient cells, MMEJ is crucial as a backup DNA repair pathway, indicating the indispensable role of POLQ-mediated MMEJ in HR deficient cancer cells. In addition, POLQ is synthetic… More >

  • Open Access

    ARTICLE

    Research on Clinical Effectiveness of Aspirin for Treating Breast Cancer and Cell Protein Biomarkers on Aspirin Treatment in Drug-Resistant Estrogen Receptor-Positive Breast Cancer Cells

    Junwei Cui1, Minghua Li2, Ruifang Pang2,*, Yinhua Liu1,*

    Oncologie, Vol.24, No.4, pp. 743-768, 2022, DOI:10.32604/oncologie.2022.025419

    Abstract Background: Aspirin (ASA) has been reported to have an antitumor effect but the role of ASA in the prevention and treatment of breast cancer (BC) is still controversial. This study aimed to identify clinical effectiveness of ASA in the treatment of BC and explore the antitumor target proteins of ASA that may be involved in overcoming tamoxifen resistance in estrogen receptor (ER)-positive BC cells. Materials and Methods: Randomized controlled trials (RCTs) of ASA in the treatment of BC were queried from the databases, including PubMed, Web of Science, Cochrane Library, WanFang, and Chinese National Knowledge Infrastructure. According to the quality… More >

  • Open Access

    ARTICLE

    Columbianetin acetate inhibits the occurrence and development of pancreatic cancer cells by down-regulating the expression of Meiotic nuclear divisions 1

    KANG SUN1, DONGQIN WANG1, ZHIQIANG ZHANG1, YINLONG HUANG3, XIAOFU LIAN3, JIALE HUA3, JING ZHANG3,*, CHAOQUN LIAN1,2,*

    BIOCELL, Vol.47, No.2, pp. 297-307, 2023, DOI:10.32604/biocell.2023.023553

    Abstract Columbianetin acetate (CE) is one of the effective components of Angelica pubescens. So far, the specific role and molecular mechanism of CE in pancreatic cancer are not clear. Thus, this study aimed to explore the specific mechanism of CE on pancreatic cancer. The target genes combined with CE were predicted through the PharmMapper database and the 3D molecular structure of CE. Then, the Cancer Genome Atlas (TCGA) and Cistrome data browser (DB) databases were used to screen Meiotic nuclear divisions 1 (MND1)-related genes, transcription factors, and transcription factor data sets, and the intersection of the above data sets. The “limma”… More >

  • Open Access

    REVIEW

    The role of YAP in the control of the metastatic potential of oral cancer

    USAMA SHARIF AHMAD, KARTHIK SARAVANAN, HONG WAN*

    Oncology Research, Vol.29, No.6, pp. 377-391, 2021, DOI:10.32604/or.2022.026085

    Abstract The Yes-associated protein (YAP) is a downstream effector of the Hippo pathway and acts as a key transcription co-factor to regulate cell migration, proliferation, and survival. The Hippo pathway is evolutionarily conserved and controls tissue growth and organ size. Dysregulation and heterogeneity of this pathway are found in cancers, including oral squamous cell carcinoma (OSCC), leading to overexpression of YAP and its regulated proliferation machinery. The activity of YAP is associated with its nuclear expression and is negatively regulated by the Hippo kinase-mediated phosphorylation resulting in an induction of its cytoplasmic translocation. This review focuses on the role of YAP… More >

  • Open Access

    REVIEW

    Surface activity of cancer cells: The fusion of two cell aggregates

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out the role of these physical… More >

  • Open Access

    ARTICLE

    Schisandrin B exerts anticancer effects on human gastric cancer cells through ROS-mediated MAPK, STAT3, and NF-κB pathways

    TIANZHU LI1,#, YU ZHANG2,#, TONG ZHANG2,#, YANNAN LI2, HUI XUE2, JINGLONG CAO2, WENSHUANG HOU2, YINGHUA LUO3,*, CHENGHAO JIN2,4,*,

    BIOCELL, Vol.47, No.1, pp. 195-204, 2023, DOI:10.32604/biocell.2023.025593

    Abstract Schisandrin B (Sch B) is a monomer with anti-cancer and anti-inflammatory effects, which are isolated from the plant Schisandra chinensis (Turcz) Baillon. We investigated the anti-gastric cancer (GC) effects of Sch B and its underlying molecular mechanisms. The Cell Counting Kit-8 assay was used to determine the effects of Sch B on the viability of GC and normal cell lines. Hoechst/propidium iodide staining and flow cytometry were used to assess the apoptosis induction of Sch B. Western blotting was used to evaluate the effects of Sch B on downstream apoptotic proteins. The DCFH-DA fluorescent probe was used to assess the… More >

Displaying 31-40 on page 4 of 129. Per Page