Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Spatial Variability Assessment on Staple Crop Yields in Hisar District of Haryana, India Using GIS and Remote Sensing

    Sanghati Banerjee1, Om Pal2, Tauseef Ahmad3, Shruti Kanga4, Suraj Kumar Singh1,*, Bhartendu Sajan1

    Revue Internationale de Géomatique, Vol.34, pp. 71-88, 2025, DOI:10.32604/rig.2025.057963 - 24 February 2025

    Abstract Agriculture is a primary activity in many countries, with wheat being a major cereal crop in India. Accurate pre-harvest forecasts of crop acreage and production are critical for policymakers to address supply-demand dynamics, pricing, and trade. This study focuses on estimating wheat acreage and yield in Barwala block, Hisar district, Haryana, for the 2019–2020 Rabi season using remote sensing techniques. Multi-temporal satellite data capturing phenological stages of wheat (Seedling to Ripening) were processed using supervised classification with a maximum likelihood classifier in ERDAS Imagine. Wheat crop acreage was determined by overlaying ground truth points on… More >

  • Open Access

    ARTICLE

    YOLOCSP-PEST for Crops Pest Localization and Classification

    Farooq Ali1,*, Huma Qayyum1, Kashif Saleem2, Iftikhar Ahmad3, Muhammad Javed Iqbal4

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2373-2388, 2025, DOI:10.32604/cmc.2025.060745 - 17 February 2025

    Abstract Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging… More >

  • Open Access

    ARTICLE

    Integrating Image Processing Technology and Deep Learning to Identify Crops in UAV Orthoimages

    Ching-Lung Fan1,*, Yu-Jen Chung2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1925-1945, 2025, DOI:10.32604/cmc.2025.059245 - 17 February 2025

    Abstract This study aims to enhance automated crop detection using high-resolution Unmanned Aerial Vehicle (UAV) imagery by integrating the Visible Atmospherically Resistant Index (VARI) with deep learning models. The primary challenge addressed is the detection of bananas interplanted with betel nuts, a scenario where traditional image processing techniques struggle due to color similarities and canopy overlap. The research explores the effectiveness of three deep learning models—Single Shot MultiBox Detector (SSD), You Only Look Once version 3 (YOLOv3), and Faster Region-Based Convolutional Neural Network (Faster RCNN)—using Red, Green, Blue (RGB) and VARI images for banana detection. Results More >

  • Open Access

    REVIEW

    Research Progress on the Growth-Promoting Effect of Plant Biostimulants on Crops

    Qi Lu1,2, Longfei Jin2, Cuiling Tong3, Feng Liu2, Bei Huang2, Dejian Zhang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 661-679, 2024, DOI:10.32604/phyton.2024.049733 - 29 April 2024

    Abstract A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency, abiotic stress tolerance, and/or crop quality traits, regardless of its nutrient content. The application of Plant biostimulants (PBs) in production can reduce the application of traditional pesticides and chemical fertilizers and improve the quality and yield of crops, which is conducive to the sustainable development of agriculture. An in-depth understanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonably and effectively in the practice of crop production. This paper summarizes the main More >

  • Open Access

    ARTICLE

    Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

    Medhat A. Tawfeek1,2, Nacim Yanes3,4, Leila Jamel5,*, Ghadah Aldehim5, Mahmood A. Mahmood1,6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2545-2564, 2023, DOI:10.32604/cmc.2023.042179 - 29 November 2023

    Abstract The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Transfer Learning Based Insect Pest Classification for Agricultural Crops

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana murthy3, Ravuri Daniel4, E. Laxmi Lydia5, Mohamad Khairi Ishak6, Hend Khalid Alkahtani7,*, Ayman Aljarbouh8, Samih M. Mostafa9

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3847-3864, 2023, DOI:10.32604/csse.2023.036552 - 03 April 2023

    Abstract Crop insect detection becomes a tedious process for agronomists because a substantial part of the crops is damaged, and due to the pest attacks, the quality is degraded. They are the major reason behind crop quality degradation and diminished crop productivity. Hence, accurate pest detection is essential to guarantee safety and crop quality. Conventional identification of insects necessitates highly trained taxonomists to detect insects precisely based on morphological features. Lately, some progress has been made in agriculture by employing machine learning (ML) to classify and detect pests. This study introduces a Modified Metaheuristics with Transfer… More >

  • Open Access

    REVIEW

    The Genetic and Biochemical Mechanisms Underlying Cereal Seed Dormancy

    Sasa Jing1, Yuan Tian1, Heng Zhang2, John T. Hancock3, Ying Zhu2,*, Ping Li1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.4, pp. 1203-1214, 2023, DOI:10.32604/phyton.2023.026305 - 06 January 2023

    Abstract The crop seeds have been a staple food for humans, and seed yield is important for sustaining agriculture development and enhancing human adaptability to food risks. The phenomenon of pre-harvest sprouting (PHS), caused by seed dormancy deficiency, and the phenomenon of low seedling emergence caused by seed deep dormancy, will lead to a reduction in agricultural production. Therefore, it is particularly important to understand the regulation mechanisms of seed dormancy. There are many studies on the regulation of seed dormancy in rice, but there are few studies on the regulation of seed dormancy in other More >

  • Open Access

    ARTICLE

    Crops Leaf Diseases Recognition: A Framework of Optimum Deep Learning Features

    Shafaq Abbas1, Muhammad Attique Khan1, Majed Alhaisoni2, Usman Tariq3, Ammar Armghan4, Fayadh Alenezi4, Arnab Majumdar5, Orawit Thinnukool6,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1139-1159, 2023, DOI:10.32604/cmc.2023.028824 - 22 September 2022

    Abstract Manual diagnosis of crops diseases is not an easy process; thus, a computerized method is widely used. From a couple of years, advancements in the domain of machine learning, such as deep learning, have shown substantial success. However, they still faced some challenges such as similarity in disease symptoms and irrelevant features extraction. In this article, we proposed a new deep learning architecture with optimization algorithm for cucumber and potato leaf diseases recognition. The proposed architecture consists of five steps. In the first step, data augmentation is performed to increase the numbers of training samples.… More >

  • Open Access

    ARTICLE

    Prediction of Suitable Crops Using Stacked Scaling Conjugant Neural Classifier

    P. Nithya*, A. M. Kalpana

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3743-3755, 2023, DOI:10.32604/iasc.2023.030394 - 17 August 2022

    Abstract Agriculture plays a vital role in economic development. The major problem faced by the farmers are the selection of suitable crops based on environmental conditions such as weather, soil nutrients, etc. The farmers were following ancestral patterns, which could sometimes lead to the wrong selection of crops. In this research work, the feature selection method is adopted to improve the performance of the classification. The most relevant features from the dataset are obtained using a Probabilistic Feature Selection (PFS) approach, and classification is done using a Neural Fuzzy Classifier (NFC). Scaling Conjugate Gradient (SCG) optimization More >

  • Open Access

    REVIEW

    Heavy Metal/Metalloid Indexing and Balances in Agricultural Soils: Methodological Approach for Research

    Shahid Hussain*

    Phyton-International Journal of Experimental Botany, Vol.91, No.12, pp. 2687-2697, 2022, DOI:10.32604/phyton.2022.021158 - 29 August 2022

    Abstract Heavy metal(loid) accumulation in agricultural soils is a threat to the soil capacity, quality, and productivity. It also increases human exposure to heavy metal(loid)s via consumption of contaminated plant-based foods. The detrimental effects of soil contamination also deteriorate the environment of plants and animals. For sustainable agriculture, therefore, the soil must be protected from toxic levels of heavy metal(loid)s. Studies on heavy metal(loid) balances in agricultural soils are important in predicting future risks to sustainable production from agro-ecological zones and human exposure to heavy metal(loid)s. The latest and continuous indexing of the problem seems a More >

Displaying 1-10 on page 1 of 25. Per Page