Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,756)
  • Open Access

    ARTICLE

    Integrated CWT-CNN for Epilepsy Detection Using Multiclass EEG Dataset

    Sidra Naseem1, Kashif Javed1, Muhammad Jawad Khan1, Saddaf Rubab2, Muhammad Attique Khan3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 471-486, 2021, DOI:10.32604/cmc.2021.018239 - 04 June 2021

    Abstract Electroencephalography is a common clinical procedure to record brain signals generated by human activity. EEGs are useful in Brain controlled interfaces and other intelligent Neuroscience applications, but manual analysis of these brainwaves is complicated and time-consuming even for the experts of neuroscience. Various EEG analysis and classification techniques have been proposed to address this problem however, the conventional classification methods require identification and learning of specific EEG characteristics beforehand. Deep learning models can learn features from data without having in depth knowledge of data and prior feature identification. One of the great implementations of deep… More >

  • Open Access

    ARTICLE

    Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks

    Bandar Almaslukh*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1343-1360, 2021, DOI:10.32604/cmc.2021.017914 - 04 June 2021

    Abstract Wireless sensor networks (WSNs) are considered promising for applications such as military surveillance and healthcare. The security of these networks must be ensured in order to have reliable applications. Securing such networks requires more attention, as they typically implement no dedicated security appliance. In addition, the sensors have limited computing resources and power and storage, which makes WSNs vulnerable to various attacks, especially denial of service (DoS). The main types of DoS attacks against WSNs are blackhole, grayhole, flooding, and scheduling. There are two primary techniques to build an intrusion detection system (IDS): signature-based and… More >

  • Open Access

    ARTICLE

    An Efficient CNN-Based Automated Diagnosis Framework from COVID-19 CT Images

    Walid El-Shafai1, Noha A. El-Hag2, Ghada M. El-Banby3, Ashraf A. M. Khalaf2, Naglaa F. Soliman4,*, Abeer D. Algarni4, Fathi E. Abd El-Samie1,4

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1323-1341, 2021, DOI:10.32604/cmc.2021.017385 - 04 June 2021

    Abstract Corona Virus Disease-2019 (COVID-19) continues to spread rapidly in the world. It has dramatically affected daily lives, public health, and the world economy. This paper presents a segmentation and classification framework of COVID-19 images based on deep learning. Firstly, the classification process is employed to discriminate between COVID-19, non-COVID, and pneumonia by Convolutional Neural Network (CNN). Then, the segmentation process is applied for COVID-19 and pneumonia CT images. Finally, the resulting segmented images are used to identify the infected region, whether COVID-19 or pneumonia. The proposed CNN consists of four Convolutional (Conv) layers, four batch More >

  • Open Access

    ARTICLE

    AntiFlamPred: An Anti-Inflammatory Peptide Predictor for Drug Selection Strategies

    Fahad Alotaibi1, Muhammad Attique2,3, Yaser Daanial Khan2,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1039-1055, 2021, DOI:10.32604/cmc.2021.017297 - 04 June 2021

    Abstract Several autoimmune ailments and inflammation-related diseases emphasize the need for peptide-based therapeutics for their treatment and established substantial consideration. Though, the wet-lab experiments for the investigation of anti-inflammatory proteins/peptides (“AIP”) are usually very costly and remain time-consuming. Therefore, before wet-lab investigations, it is essential to develop in-silico identification models to classify prospective anti-inflammatory candidates for the facilitation of the drug development process. Several anti-inflammatory prediction tools have been proposed in the recent past, yet, there is a space to induce enhancement in prediction performance in terms of precision and efficiency. An exceedingly accurate anti-inflammatory prediction… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Cosmetic Product Detection and Classification

    Se-Won Kim1, Sang-Woong Lee2,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 713-725, 2021, DOI:10.32604/cmc.2021.017292 - 04 June 2021

    Abstract As the amount of online video content is increasing, consumers are becoming increasingly interested in various product names appearing in videos, particularly in cosmetic-product names in videos related to fashion, beauty, and style. Thus, the identification of such products by using image recognition technology may aid in the identification of current commercial trends. In this paper, we propose a two-stage deep-learning detection and classification method for cosmetic products. Specifically, variants of the YOLO network are used for detection, where the bounding box for each given input product is predicted and subsequently cropped for classification. We More >

  • Open Access

    ARTICLE

    Cryptographic Based Secure Model on Dataset for Deep Learning Algorithms

    Muhammad Tayyab1,*, Mohsen Marjani1, N. Z. Jhanjhi1, Ibrahim Abaker Targio Hashim2, Abdulwahab Ali Almazroi3, Abdulaleem Ali Almazroi4

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1183-1200, 2021, DOI:10.32604/cmc.2021.017199 - 04 June 2021

    Abstract Deep learning (DL) algorithms have been widely used in various security applications to enhance the performances of decision-based models. Malicious data added by an attacker can cause several security and privacy problems in the operation of DL models. The two most common active attacks are poisoning and evasion attacks, which can cause various problems, including wrong prediction and misclassification of decision-based models. Therefore, to design an efficient DL model, it is crucial to mitigate these attacks. In this regard, this study proposes a secure neural network (NN) model that provides data security during model training… More >

  • Open Access

    ARTICLE

    Segmentation and Classification of Stomach Abnormalities Using Deep Learning

    Javeria Naz1, Muhammad Attique Khan1, Majed Alhaisoni2, Oh-Young Song3,*, Usman Tariq4, Seifedine Kadry5

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 607-625, 2021, DOI:10.32604/cmc.2021.017101 - 04 June 2021

    Abstract An automated system is proposed for the detection and classification of GI abnormalities. The proposed method operates under two pipeline procedures: (a) segmentation of the bleeding infection region and (b) classification of GI abnormalities by deep learning. The first bleeding region is segmented using a hybrid approach. The threshold is applied to each channel extracted from the original RGB image. Later, all channels are merged through mutual information and pixel-based techniques. As a result, the image is segmented. Texture and deep learning features are extracted in the proposed classification task. The transfer learning (TL) approach… More >

  • Open Access

    ARTICLE

    COVID19 Classification Using CT Images via Ensembles of Deep Learning Models

    Abdul Majid1, Muhammad Attique Khan1, Yunyoung Nam2,*, Usman Tariq3, Sudipta Roy4, Reham R. Mostafa5, Rasha H. Sakr6

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 319-337, 2021, DOI:10.32604/cmc.2021.016816 - 04 June 2021

    Abstract The recent COVID-19 pandemic caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a significant impact on human life and the economy around the world. A reverse transcription polymerase chain reaction (RT-PCR) test is used to screen for this disease, but its low sensitivity means that it is not sufficient for early detection and treatment. As RT-PCR is a time-consuming procedure, there is interest in the introduction of automated techniques for diagnosis. Deep learning has a key role to play in the field of medical imaging. The most important issue… More >

  • Open Access

    ARTICLE

    3D Semantic Deep Learning Networks for Leukemia Detection

    Javaria Amin1, Muhammad Sharif2, Muhammad Almas Anjum3, Ayesha Siddiqa1, Seifedine Kadry4, Yunyoung Nam5,*, Mudassar Raza2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 785-799, 2021, DOI:10.32604/cmc.2021.015249 - 04 June 2021

    Abstract White blood cells (WBCs) are a vital part of the immune system that protect the body from different types of bacteria and viruses. Abnormal cell growth destroys the body’s immune system, and computerized methods play a vital role in detecting abnormalities at the initial stage. In this research, a deep learning technique is proposed for the detection of leukemia. The proposed methodology consists of three phases. Phase I uses an open neural network exchange (ONNX) and YOLOv2 to localize WBCs. The localized images are passed to Phase II, in which 3D-segmentation is performed using deeplabv3 More >

  • Open Access

    ARTICLE

    A Novel Method Based on UNET for Bearing Fault Diagnosis

    Dileep Kumar1,*, Imtiaz Hussain Kalwar2, Tanweer Hussain1, Bhawani Shankar Chowdhry1, Sanaullah Mehran Ujjan1, Tayab Din Memon3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 393-408, 2021, DOI:10.32604/cmc.2021.014941 - 04 June 2021

    Abstract Reliability of rotating machines is highly dependent on the smooth rolling of bearings. Thus, it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable fault diagnosis and condition monitoring approach. In the recent past, Deep Learning (DL) has become applicable in condition monitoring of rotating machines owing to its performance. This paper proposes a novel bearing fault diagnosis method based on the processing and analysis of the vibration images. The proposed method is the UNET model that is a recent development in DL models. The model More >

Displaying 1541-1550 on page 155 of 1756. Per Page