Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,561)
  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024

    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

  • Open Access

    ARTICLE

    Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis

    Longgang Zhao1, Seok-Won Lee2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1855-1877, 2024, DOI:10.32604/cmc.2024.056215 - 15 October 2024

    Abstract Although sentiment analysis is pivotal to understanding user preferences, existing models face significant challenges in handling context-dependent sentiments, sarcasm, and nuanced emotions. This study addresses these challenges by integrating ontology-based methods with deep learning models, thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback. The framework comprises explicit topic recognition, followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis. In the context of sentiment analysis, we develop an expanded sentiment lexicon based on domain-specific corpora by leveraging techniques such as word-frequency analysis and word embedding. More >

  • Open Access

    ARTICLE

    Research on Fine-Grained Recognition Method for Sensitive Information in Social Networks Based on CLIP

    Menghan Zhang1,2, Fangfang Shan1,2,*, Mengyao Liu1,2, Zhenyu Wang1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1565-1580, 2024, DOI:10.32604/cmc.2024.056008 - 15 October 2024

    Abstract With the emergence and development of social networks, people can stay in touch with friends, family, and colleagues more quickly and conveniently, regardless of their location. This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy. Due to the complexity and subtlety of sensitive information, traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data, thus weakening the deep connections between text and images. In this context, this paper adopts the CLIP model as a modality discriminator. By using comparative learning between sensitive image descriptions and… More >

  • Open Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024

    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024

    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open Access

    ARTICLE

    A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection

    Chandraumakantham Om Kumar1,*, Sudhakaran Gajendran2, Suguna Marappan1, Mohammed Zakariah3, Abdulaziz S. Almazyad4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 471-501, 2024, DOI:10.32604/cmc.2024.054966 - 15 October 2024

    Abstract The security of the wireless sensor network-Internet of Things (WSN-IoT) network is more challenging due to its randomness and self-organized nature. Intrusion detection is one of the key methodologies utilized to ensure the security of the network. Conventional intrusion detection mechanisms have issues such as higher misclassification rates, increased model complexity, insignificant feature extraction, increased training time, increased run time complexity, computation overhead, failure to identify new attacks, increased energy consumption, and a variety of other factors that limit the performance of the intrusion system model. In this research a security framework for WSN-IoT, through… More >

  • Open Access

    REVIEW

    Exploring Frontier Technologies in Video-Based Person Re-Identification: A Survey on Deep Learning Approach

    Jiahe Wang1, Xizhan Gao1,*, Fa Zhu2, Xingchi Chen3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 25-51, 2024, DOI:10.32604/cmc.2024.054895 - 15 October 2024

    Abstract Video-based person re-identification (Re-ID), a subset of retrieval tasks, faces challenges like uncoordinated sample capturing, viewpoint variations, occlusions, cluttered backgrounds, and sequence uncertainties. Recent advancements in deep learning have significantly improved video-based person Re-ID, laying a solid foundation for further progress in the field. In order to enrich researchers’ insights into the latest research findings and prospective developments, we offer an extensive overview and meticulous analysis of contemporary video-based person Re-ID methodologies, with a specific emphasis on network architecture design and loss function design. Firstly, we introduce methods based on network architecture design and loss… More >

  • Open Access

    ARTICLE

    Border Sensitive Knowledge Distillation for Rice Panicle Detection in UAV Images

    Anitha Ramachandran, Sendhil Kumar K.S.*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 827-842, 2024, DOI:10.32604/cmc.2024.054768 - 15 October 2024

    Abstract Research on panicle detection is one of the most important aspects of paddy phenotypic analysis. A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods. Nevertheless, it entails many other challenges, including different illuminations, panicle sizes, shape distortions, partial occlusions, and complex backgrounds. Object detection algorithms are directly affected by these factors. This work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation (BSKD). It is designed to prioritize the preservation of knowledge in border areas through the use of feature distillation. Our feature-based knowledge distillation method More >

  • Open Access

    ARTICLE

    Advancing PCB Quality Control: Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection

    Rehman Ullah Khan1, Fazal Shah2,*, Ahmad Ali Khan3, Hamza Tahir2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 345-367, 2024, DOI:10.32604/cmc.2024.054439 - 15 October 2024

    Abstract Printed Circuit Boards (PCBs) are materials used to connect components to one another to form a working circuit. PCBs play a crucial role in modern electronics by connecting various components. The trend of integrating more components onto PCBs is becoming increasingly common, which presents significant challenges for quality control processes. Given the potential impact that even minute defects can have on signal traces, the surface inspection of PCB remains pivotal in ensuring the overall system integrity. To address the limitations associated with manual inspection, this research endeavors to automate the inspection process using the YOLOv8… More >

  • Open Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024

    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

Displaying 31-40 on page 4 of 1561. Per Page