Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,595)
  • Open Access

    ARTICLE

    LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques

    Shanjita Akter Prome1, Md Rafiqul Islam2,*, Md. Kowsar Hossain Sakib1, David Asirvatham1, Neethiahnanthan Ari Ragavan3, Cesar Sanin2, Edward Szczerbicki4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2845-2871, 2024, DOI:10.32604/cmc.2024.055311 - 18 November 2024

    Abstract Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques. Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception. So, it could be challenging to spot trends, practical approaches, gaps, and chances for contribution.… More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Industrial Corrosion Detection

    Mehwash Farooqui1, Atta Rahman2,*, Latifa Alsuliman1, Zainab Alsaif1, Fatimah Albaik1, Cadi Alshammari1, Razan Sharaf1, Sunday Olatunji1, Sara Waslallah Althubaiti1, Hina Gull3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2587-2605, 2024, DOI:10.32604/cmc.2024.055262 - 18 November 2024

    Abstract The proposed study focuses on the critical issue of corrosion, which leads to significant economic losses and safety risks worldwide. A key area of emphasis is the accuracy of corrosion detection methods. While recent studies have made progress, a common challenge is the low accuracy of existing detection models. These models often struggle to reliably identify corrosion tendencies, which are crucial for minimizing industrial risks and optimizing resource use. The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network (CNN), as well as two pretrained… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Architecture for Superior IoT Threat Detection through Real IoT Environments

    Bassam Mohammad Elzaghmouri1, Yosef Hasan Fayez Jbara2, Said Elaiwat3, Nisreen Innab4,*, Ahmed Abdelgader Fadol Osman5, Mohammed Awad Mohammed Ataelfadiel5, Farah H. Zawaideh6, Mouiad Fadeil Alawneh7, Asef Al-Khateeb8, Marwan Abu-Zanona8

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2299-2316, 2024, DOI:10.32604/cmc.2024.054836 - 18 November 2024

    Abstract As the Internet of Things (IoT) continues to expand, incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats, necessitating robust defense mechanisms. This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings. Our proposed model combines Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BLSTM), Gated Recurrent Units (GRU), and Attention mechanisms into a cohesive framework. This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.… More >

  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    REVIEW

    Analysing Recent Breakthroughs in Fault Diagnosis through Sensor: A Comprehensive Overview

    Sumika Chauhan, Govind Vashishtha*, Radoslaw Zimroz

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1983-2020, 2024, DOI:10.32604/cmes.2024.055633 - 31 October 2024

    Abstract Sensors, vital elements in data acquisition systems, play a crucial role in various industries. However, their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance. Early fault detection is therefore critical for minimizing downtime and ensuring system reliability. This paper delves into the contemporary landscape of fault diagnosis techniques for sensors, offering valuable insights for researchers and academicians. The papers begin by exploring the different types and causes of sensor faults, followed by a discussion of the various fault diagnosis methods employed in industrial sectors. The advantages and limitations More >

  • Open Access

    ARTICLE

    Transfer Learning Empowered Skin Diseases Detection in Children

    Meena N. Alnuaimi1, Nourah S. Alqahtani1, Mohammed Gollapalli2, Atta Rahman1,*, Alaa Alahmadi1, Aghiad Bakry1, Mustafa Youldash3, Dania Alkhulaifi1, Rashad Ahmed4, Hesham Al-Musallam1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2609-2623, 2024, DOI:10.32604/cmes.2024.055303 - 31 October 2024

    Abstract Human beings are often affected by a wide range of skin diseases, which can be attributed to genetic factors and environmental influences, such as exposure to sunshine with ultraviolet (UV) rays. If left untreated, these diseases can have severe consequences and spread, especially among children. Early detection is crucial to prevent their spread and improve a patient’s chances of recovery. Dermatology, the branch of medicine dealing with skin diseases, faces challenges in accurately diagnosing these conditions due to the difficulty in identifying and distinguishing between different diseases based on their appearance, type of skin, and… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis

    Hussain AlSalman1, Taha Alfakih2, Mabrook Al-Rakhami2, Mohammad Mehedi Hassan2,*, Amerah Alabrah2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2575-2608, 2024, DOI:10.32604/cmes.2024.055011 - 31 October 2024

    Abstract Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics, integral for early detection and effective treatment. While deep learning has significantly advanced the analysis of mammographic images, challenges such as low contrast, image noise, and the high dimensionality of features often degrade model performance. Addressing these challenges, our study introduces a novel method integrating Genetic Algorithms (GA) with pre-trained Convolutional Neural Network (CNN) models to enhance feature selection and classification accuracy. Our approach involves a systematic process: first, we employ widely-used CNN architectures (VGG16, VGG19, MobileNet, and DenseNet) to extract a… More >

  • Open Access

    ARTICLE

    Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems

    Attiya Khan1, Muhammad Rizwan2, Ovidiu Bagdasar2,3, Abdulatif Alabdulatif4,*, Sulaiman Alamro4, Abdullah Alnajim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2121-2141, 2024, DOI:10.32604/cmes.2024.054380 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is an emerging technology that combines the Internet of Things (IoT) into the healthcare sector, which brings remarkable benefits to facilitate remote patient monitoring and reduce treatment costs. As IoMT devices become more scalable, Smart Healthcare Systems (SHS) have become increasingly vulnerable to cyberattacks. Intrusion Detection Systems (IDS) play a crucial role in maintaining network security. An IDS monitors systems or networks for suspicious activities or potential threats, safeguarding internal networks. This paper presents the development of an IDS based on deep learning techniques utilizing benchmark datasets. We propose More >

Displaying 51-60 on page 6 of 1595. Per Page