Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,895)
  • Open Access

    ARTICLE

    Head-Body Guided Deep Learning Framework for Dog Breed Recognition

    Noman Khan1, Afnan2, Mi Young Lee3,*, Jakyoung Min4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2935-2958, 2025, DOI:10.32604/cmc.2025.069058 - 23 September 2025

    Abstract Fine-grained dog breed classification presents significant challenges due to subtle inter-class differences, pose variations, and intra-class diversity. To address these complexities and limitations of traditional handcrafted approaches, a novel and efficient two-stage Deep Learning (DL) framework tailored for robust fine-grained classification is proposed. In the first stage, a lightweight object detector, YOLO v8N (You Only Look Once Version 8 Nano), is fine-tuned to localize both the head and full body of the dog from each image. In the second stage, a dual-stream Vision Transformer (ViT) architecture independently processes the detected head and body regions, enabling… More >

  • Open Access

    ARTICLE

    CGB-Net: A Novel Convolutional Gated Bidirectional Network for Enhanced Sleep Posture Classification

    Hoang-Dieu Vu1,2, Duc-Nghia Tran3, Quang-Tu Pham1, Ngoc-Linh Nguyen4,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2819-2835, 2025, DOI:10.32604/cmc.2025.068355 - 23 September 2025

    Abstract This study presents CGB-Net, a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer, with direct applicability to gastroesophageal reflux disease (GERD) monitoring. Unlike conventional approaches limited to four basic postures, CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions, providing enhanced resolution for personalized health assessment. The architecture introduces a unique integration of three complementary components: 1D Convolutional Neural Networks (1D-CNN) for efficient local spatial feature extraction, Gated Recurrent Units (GRU) to capture short-term temporal dependencies with reduced computational complexity, and Bidirectional Long Short-Term Memory… More >

  • Open Access

    REVIEW

    A Survey of Deep Learning for Time Series Forecasting: Theories, Datasets, and State-of-the-Art Techniques

    Gaoyong Lu1, Yang Ou1, Zhihong Wang2, Yingnan Qu2, Yingsheng Xia2, Dibin Tang2, Igor Kotenko3, Wei Li2,4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2403-2441, 2025, DOI:10.32604/cmc.2025.068024 - 23 September 2025

    Abstract Deep learning (DL) has revolutionized time series forecasting (TSF), surpassing traditional statistical methods (e.g., ARIMA) and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data. This comprehensive survey reviews state-of-the-art DL architectures for TSF, focusing on four core paradigms: (1) Convolutional Neural Networks (CNNs), adept at extracting localized temporal features; (2) Recurrent Neural Networks (RNNs) and their advanced variants (LSTM, GRU), designed for sequential dependency modeling; (3) Graph Neural Networks (GNNs), specialized for forecasting structured relational data with spatial-temporal dependencies; and (4) Transformer-based models, leveraging self-attention mechanisms to… More >

  • Open Access

    ARTICLE

    Deep Learning-Based NLP Framework for Public Sentiment Analysis on Green Consumption: Evidence from Social Media

    Luyu Ma1,*, Xiu Cheng1,*, Zongyan Xing1, Yue Wu1, Weiwei Jiang2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3921-3943, 2025, DOI:10.32604/cmc.2025.067786 - 23 September 2025

    Abstract Green consumption (GC) are crucial for achieving the Sustainable Development Goals (SDGs). However, few studies have explored public attitudes toward GC using social media data, missing potential public concerns captured through big data. To address this gap, this study collects and analyzes public attention toward GC using web crawler technology. Based on the data from Sina Weibo, we applied RoBERTa, an advanced NLP model based on transformer architecture, to conduct fine-grained sentiment analysis of the public’s attention, attitudes and hot topics on GC, demonstrating the potential of deep learning methods in capturing dynamic and contextual… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Automated Inspection of Generic Personal Protective Equipment

    Atta Rahman*, Fahad Abdullah Alatallah, Abdullah Jafar Almubarak, Haider Ali Alkhazal, Hasan Ali Alzayer, Younis Zaki Shaaban, Nasro Min-Allah, Aghiad Bakry, Khalid Aloup

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3507-3525, 2025, DOI:10.32604/cmc.2025.067547 - 23 September 2025

    Abstract This study presents an automated system for monitoring Personal Protective Equipment (PPE) compliance using advanced computer vision techniques in industrial settings. Despite strict safety regulations, manual monitoring of PPE compliance remains inefficient and prone to human error, particularly in harsh environmental conditions like in Saudi Arabia’s Eastern Province. The proposed solution leverages the state-of-the-art YOLOv11 deep learning model to detect multiple safety equipment classes, including safety vests, hard hats, safety shoes, gloves, and their absence (no_hardhat, no_safety_vest, no_safety_shoes, no_gloves) along with person detection. The system is designed to perform real-time detection of safety gear while… More >

  • Open Access

    ARTICLE

    Towards Efficient Vehicle Recognition: A Unified System for VMMR, ANPR, and Color Classification

    Saad Sadiq1, Kashif Sultan1, Muhammad Sheraz2, Teong Chee Chuah2,*, Muhammad Usman Hashmi3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3945-3963, 2025, DOI:10.32604/cmc.2025.067538 - 23 September 2025

    Abstract Vehicle recognition plays a vital role in intelligent transportation systems, law enforcement, access control, and security operations—domains that are becoming increasingly dynamic and complex. Despite advancements, most existing solutions remain siloed, addressing individual tasks such as vehicle make and model recognition (VMMR), automatic number plate recognition (ANPR), and color classification separately. This fragmented approach limits real-world efficiency, leading to slower processing, reduced accuracy, and increased operational costs, particularly in traffic monitoring and surveillance scenarios. To address these limitations, we present a unified framework that consolidates all three recognition tasks into a single, lightweight system. The More >

  • Open Access

    ARTICLE

    An Efficient Deep Learning-Based Hybrid Framework for Personality Trait Prediction through Behavioral Analysis

    Nareshkumar Raveendhran, Nimala Krishnan*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3253-3265, 2025, DOI:10.32604/cmc.2025.067490 - 23 September 2025

    Abstract Social media outlets deliver customers a medium for communication, exchange, and expression of their thoughts with others. The advent of social networks and the fast escalation of the quantity of data have created opportunities for textual evaluation. Utilising the user corpus, characteristics of social platform users, and other data, academic research may accurately discern the personality traits of users. This research examines the traits of consumer personalities. Usually, personality tests administered by psychological experts via interviews or self-report questionnaires are costly, time-consuming, complex, and labour-intensive. Currently, academics in computational linguistics are increasingly focused on predicting… More >

  • Open Access

    ARTICLE

    Delving into End-to-End Dual-View Prohibited Item Detection for Security Inspection System

    Zihan Jia, Bowen Ma, Dongyue Chen*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2873-2891, 2025, DOI:10.32604/cmc.2025.067460 - 23 September 2025

    Abstract In real-world scenarios, dual-view X-ray machines have outnumbered single-view X-ray machines due to their ability to provide comprehensive internal information about the baggage, which is important for identifying prohibited items that are not visible in one view due to rotation or overlap. However, existing work still focuses mainly on single-view, and the limited dual-view based work only performs simple information fusion at the feature or decision level and lacks effective utilization of the complementary information hidden in dual view. To this end, this paper proposes an end-to-end dual-view prohibited item detection method, the core of… More >

  • Open Access

    ARTICLE

    A Comparative Study of Data Representation Techniques for Deep Learning-Based Classification of Promoter and Histone-Associated DNA Regions

    Sarab Almuhaideb1,*, Najwa Altwaijry1, Isra Al-Turaiki1, Ahmad Raza Khan2, Hamza Ali Rizvi3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3095-3128, 2025, DOI:10.32604/cmc.2025.067390 - 23 September 2025

    Abstract Many bioinformatics applications require determining the class of a newly sequenced Deoxyribonucleic acid (DNA) sequence, making DNA sequence classification an integral step in performing bioinformatics analysis, where large biomedical datasets are transformed into valuable knowledge. Existing methods rely on a feature extraction step and suffer from high computational time requirements. In contrast, newer approaches leveraging deep learning have shown significant promise in enhancing accuracy and efficiency. In this paper, we investigate the performance of various deep learning architectures: Convolutional Neural Network (CNN), CNN-Long Short-Term Memory (CNN-LSTM), CNN-Bidirectional Long Short-Term Memory (CNN-BiLSTM), Residual Network (ResNet), and… More >

  • Open Access

    ARTICLE

    Deep Learning Models for Detecting Cheating in Online Exams

    Siham Essahraui1, Ismail Lamaakal1, Yassine Maleh2,*, Khalid El Makkaoui1, Mouncef Filali Bouami1, Ibrahim Ouahbi1, May Almousa3, Ali Abdullah S. AlQahtani4, Ahmed A. Abd El-Latif5,6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3151-3183, 2025, DOI:10.32604/cmc.2025.067359 - 23 September 2025

    Abstract The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments, as traditional proctoring methods fall short in preventing cheating. The increase in cheating during online exams highlights the need for efficient, adaptable detection models to uphold academic credibility. This paper presents a comprehensive analysis of various deep learning models for cheating detection in online proctoring systems, evaluating their accuracy, efficiency, and adaptability. We benchmark several advanced architectures, including EfficientNet, MobileNetV2, ResNet variants and more, using two specialized datasets (OEP and OP) tailored for online proctoring contexts. Our findings More >

Displaying 61-70 on page 7 of 1895. Per Page