Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,152)
  • Open Access

    ARTICLE

    Multi-Disciplinary Optimization for Multi-Objective Uncertainty Design of Thin Walled Beams

    Fangyi Li1, Guangyao Li2,3, Guangyong Sun2, Zhen Luo4, Zheng Zhang2

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 37-56, 2010, DOI:10.3970/cmc.2010.019.037

    Abstract The focus of this paper is concentrated on multi-disciplinary and multi-objective optimization for thin walled beam systems considering safety, normal mode, static loading-bearing and weight, in which the uncertainties of the parameters are described via intervals. The size and shape of the cross-section are treated as design parameters during optimization. Considering the lightweight and safety, the design problem is formulated with two individual objectives to measure structural weight and maximum energy absorption, respectively, constrained by the average force, normal mode and maximum stress. The optimization problem with uncertainties is further transformed into a deterministic optimization based on interval number programming.… More >

  • Open Access

    ARTICLE

    Stress Field Effects on Phonon Properties in Spatially Confined Semiconductor Nanostructures

    L.L. Zhu1,2,3, X.J. Zheng1,2

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 301-320, 2010, DOI:10.3970/cmc.2010.018.301

    Abstract The phonon properties of spatially confined nanofilms under the preexisting stress fields are investigated theoretically by accounting for the confinement effects and acoustoelastic effects. Due to the spatial confinement in low-dimensional structures, the phonon dispersion relations, phonon group velocities as well as the phonon density of states are of significant difference with the ones in bulk structures. Here, the continuum elasticity theory is made use of to determine the phonon dispersion relations of shear modes (SH), dilatational modes (SA) and the flexural modes (AS), thus to analyze the contribution of stress fields on the phonon performance of confined nanofilms. Our… More >

  • Open Access

    ARTICLE

    Flexural - Torsional Nonlinear Analysis of Timoshenko Beam-Column of Arbitrary Cross Section by BEM

    E.J. Sapountzakis1, J.A. Dourakopoulos1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 121-154, 2010, DOI:10.3970/cmc.2010.018.121

    Abstract In this paper a boundary element method is developed for the nonlinear flexural - torsional analysis of Timoshenko beam-columns of arbitrary simply or multiply connected constant cross section, undergoing moderate large deflections under general boundary conditions. The beam-column is subjected to the combined action of an arbitrarily distributed or concentrated axial and transverse loading as well as to bending and twisting moments. To account for shear deformations, the concept of shear deformation coefficients is used. Seven boundary value problems are formulated with respect to the transverse displacements, to the axial displacement, to the angle of twist (which is assumed to… More >

  • Open Access

    ARTICLE

    On Solving the Direct/Inverse Cauchy Problems of Laplace Equation in a Multiply Connected Domain, Using the Generalized Multiple-Source-Point Boundary-Collocation Trefftz Method &Characteristic Lengths

    Weichung Yeih1, Chein-Shan Liu2, Chung-Lun Kuo3, Satya N. Atluri4

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 275-302, 2010, DOI:10.3970/cmc.2010.017.275

    Abstract In this paper, a multiple-source-point boundary-collocation Trefftz method, with characteristic lengths being introduced in the basis functions, is proposed to solve the direct, as well as inverse Cauchy problems of the Laplace equation for a multiply connected domain. When a multiply connected domain with genus p (p>1) is considered, the conventional Trefftz method (T-Trefftz method) will fail since it allows only one source point, but the representation of solution using only one source point is impossible. We propose to relax this constraint by allowing many source points in the formulation. To set up a complete set of basis functions, we… More >

  • Open Access

    ARTICLE

    In-plane Crushing Analysis of Cellular Materials Using Vector Form Intrinsic Finite Element

    T.Y. Wu1, W.C. Tsai2, J.J. Lee2

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 175-214, 2010, DOI:10.3970/cmc.2010.017.175

    Abstract The crushing of cellular materials is a highly nonlinear problem, for which geometrical, material, and contact/impact must be treated in one analysis. In order to develop a framework able to solve it efficiently and accurately, in this paper procedures for in-plane crushing analysis of cellular materials using vector form intrinsic finite element (VFIFE) is performed. A beam element of VFIFE is employed to handle large rotation and large deflection in the cell walls. An elastic-plastic material model with mixed hardening rule is adopted to account for material nonlinearity. In addition, an efficient contact/impact algorithm is designed to treat the complex… More >

  • Open Access

    ARTICLE

    The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers

    Surkay D. Akbarov1,2, Resat Kosker3, Yasemen Ucan3

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 77-102, 2010, DOI:10.3970/cmc.2010.017.077

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity, the method for determination of the stress-strain state in the infinite body containing periodically located row of periodically curved fibers is developed. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the sinphase and antiphase curving cases are considered. Numerical results on the effect of the geometrical non-linearity to the values of the self balanced shear and normal stresses… More >

  • Open Access

    ARTICLE

    Effects of Surface Orientation and Temperature on Tensile Deformation of Gold Nanowires

    Qunfeng Liu1, gping Shen2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 59-76, 2010, DOI:10.3970/cmc.2010.017.059

    Abstract Molecular Dynamics (MD) simulations have been performed using the EAM potential to investigate the deformation behaviors and mechanical properties of <100>/{100} gold nanowires with square cross-section at a certain strain rate under different temperatures ranging from 10 K to 700 K. It is found that <100>/{100} gold nanowires at high temperatures tend to form the extended stable nanobridges-Helical Multi-shell Structure (HMS), which is similar to the deformation behavior of <110> gold nanowires at room temperature reported in the previous experimental observations and simulations. The effect of temperature on the mechanical properties and deformation behaviors of gold nanowires was analyzed. The… More >

  • Open Access

    ARTICLE

    Effects of TGO Roughness on Indentation Response of Thermal Barrier Coatings

    Taotao Hu1, gping Shen1,2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 41-58, 2010, DOI:10.3970/cmc.2010.017.041

    Abstract In this paper, an axisymmetric indentation model is set up to calculate the effects of the roughness of the thermally grown oxide (TGO) layer, which was modeled as a sinusoidal wave, on the indentation response of the thermal barrier coatings. It is found that the amplitude, wavelength, and thickness of the thermally grown oxide layer have obvious influences on the indentation response, while the effect of the indenter position can be neglected. In the top coating layer, residual stress mainly occurs below the indenter and around the nearest two peaks of the thermally grown oxide layer to the indenter. Only… More >

  • Open Access

    ARTICLE

    A Quasi-Boundary Semi-Analytical Approach for Two-Dimensional Backward Advection-Dispersion Equation

    Chih-Wen Chang1, Chein-Shan Liu2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 19-40, 2010, DOI:10.3970/cmc.2010.017.019

    Abstract In this study, we employ a semi-analytical approach to solve a two-dimensional advection-dispersion equation (ADE) for identifying the contamination problems. First, the Fourier series expansion technique is used to calculate the concentration field C(x, y, t) at any time t < T. Then, we ponder a direct regularization by adding an extra termaC(x, y, 0) on the final time data C(x, y, T), to reach a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us obtaining a closed-form solution of the Fourier coefficients. A strategy to choose the regularization parameter is offered. The solver utilized in… More >

  • Open Access

    ARTICLE

    Interface Effect on the Dynamic Stress around an Elliptical Nano-Inhomogeneity Subjected to Anti-Plane Shear Waves

    Xue-Qian Fang1,2, Xiao-Hua Wang1, Le-Le Zhang3

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 229-246, 2010, DOI:10.3970/cmc.2010.016.229

    Abstract In the design of advanced micro- and nanosized materials and devices containing inclusions, the effects of surfaces/interfaces on the stress concentration become prominent. In this paper, based on the surface/interface elasticity theory, a two-dimensional problem of an elliptical nano-inhomogeneity under anti-plane shear waves is considered. The conformal mapping method is then applied to solve the formulated boundary value problem. The analytical solutions of displacement fields are expressed by employing wave function expansion method, the expanded mode coefficients are determined by satisfying the boundary conditions at the interfaces of the nano-inhomogeneity. Analyses show that the effect of the interfacial properties on… More >

Displaying 7101-7110 on page 711 of 7152. Per Page