Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (170)
  • Open Access

    ARTICLE

    Numerical Simulation of Low Cycle Fatigue Behavior of Ti2AlNb Alloy Subcomponents

    Yanju Wang1, Zhenyu Zhu2, Aixue Sha1, Wenfeng Hao3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2655-2676, 2023, DOI:10.32604/cmes.2023.025749

    Abstract Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering, resulting in fatigue failure. The fatigue behavior of Ti2AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory. Firstly, the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS. The damage model parameters were determined by fatigue tests, and the reliability of fatigue life simulation results of the Ti2AlNb alloy standard open-hole specimen was verified. Meanwhile, the fatigue life of Ti2AlNb alloy Y-section subcomponents was predicted. Under the same initial conditions, the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

    Ying Wang*, Zheng Yan, Yangyang Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1339-1370, 2023, DOI:10.32604/cmes.2023.025830

    Abstract In this paper, a numerical model of fretting fatigue analysis of cable wire and the fretting fatigue damage constitutive model considering the multi-axis effect were established, and the user material subroutine UMAT was written. Then, the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established, respectively. The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written, and the fretting fatigue life was further predicted. The results show that the numerical simulation life obtained by the program in this paper has the same trend as the tested one; the error… More > Graphic Abstract

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

  • Open Access

    ARTICLE

    Lightweight Design of Commercial Vehicle Cab Based on Fatigue Durability

    Donghai Li1,2, Jiawei Tian1, Shengwen Shi2, Shanchao Wang2, Jucai Deng2, Shuilong He1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 421-445, 2023, DOI:10.32604/cmes.2023.024133

    Abstract To better improve the lightweight and fatigue durability performance of the tractor cab, a multi-objective lightweight design of the cab was carried out in this study. First, the finite element model of the cab with counterweight loading was established and then confirmed by the physical testing, and use the inertial relief method to obtain stress distribution under unit load. The cab-frame rigid-flexible coupling multi-body dynamics model was built by Adams/car software. Taking the cab airbag mount displacement and acceleration signals acquired on the proving ground as the desired signals and obtaining the fatigue analysis load spectrum through Femfat-Lab virtual iteration.… More > Graphic Abstract

    Lightweight Design of Commercial Vehicle Cab Based on Fatigue Durability

  • Open Access

    ARTICLE

    Analysis of Temperature Rise Characteristics and Fatigue Damage Degree of ACSR Broken Strand

    Jun Zhang1, Xiaobin Li1, Long Zhao2,*, Zixin Li1, Shuo Wang1, Pan Yao1, Pengfei Dai2

    Energy Engineering, Vol.120, No.3, pp. 617-631, 2023, DOI:10.32604/ee.2022.024855

    Abstract In this paper, the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out. Conduct modeling and Analysis on the conductor through Ansoft Maxwell software. The distribution of magnetic force lines in the cross section of the conductor after strand breaking and the temperature change law of the conductor with the number of broken strands are analyzed. A model based on electromagnetic theory is established to analyze the distribution of magnetic lines of force in the cross section of the conductor after strand breaking and the temperature variation law of the conductor with the… More >

  • Open Access

    ARTICLE

    Dynamic Reliability Evaluation and Life Prediction of Transmission System of Multi-Performance Degraded Wind Turbine

    Rong Yuan1, Ruitao Chen2, Haiqing Li3,*, Wenke Yang1, Xiaoxiao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2331-2347, 2023, DOI:10.32604/cmes.2023.023788

    Abstract Wind power is a kind of important green energy. Thus, wind turbines have been widely utilized around the world. Wind turbines are composed of many important components. Among these components, the failure rate of the transmission system is relatively high in wind turbines. It is because the components are subjected to aerodynamic loads for a long time. In addition, its inertial load will result in fatigue fracture, wear and other problems. In this situation, wind turbines have to be repaired at a higher cost. Moreover, the traditional reliability methods are difficult to deal with the above challenges when performing the… More >

  • Open Access

    ARTICLE

    An Analysis Model of Learners’ Online Learning Status Based on Deep Neural Network and Multi-Dimensional Information Fusion

    Mingyong Li1, Lirong Tang1, Longfei Ma1, Honggang Zhao1, Jinyu Hu1, Yan Wei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2349-2371, 2023, DOI:10.32604/cmes.2023.022604

    Abstract The learning status of learners directly affects the quality of learning. Compared with offline teachers, it is difficult for online teachers to capture the learning status of students in the whole class, and it is even more difficult to continue to pay attention to students while teaching. Therefore, this paper proposes an online learning state analysis model based on a convolutional neural network and multi-dimensional information fusion. Specifically, a facial expression recognition model and an eye state recognition model are constructed to detect students’ emotions and fatigue, respectively. By integrating the detected data with the homework test score data after… More >

  • Open Access

    ARTICLE

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

    Junya Tanehashi1, Szuchi Chang2, Takahiro Hirosei3, Masaki Izawa2, Aman Goyal2, Ayumi Takahashi4, Kazuhito Misaji4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2287-2306, 2023, DOI:10.32604/cmes.2023.022432

    Abstract This research aims to quantify driver ride comfort due to changes in damper characteristics between comfort mode and sport mode, considering the vehicle’s inertial behavior. The comfort of riding in an automobile has been evaluated in recent years on the basis of a subjective sensory evaluation given by the driver. However, reflecting driving sensations in design work to improve ride comfort is abstract in nature and difficult to express theoretically. Therefore, we evaluated the human body’s effects while driving scientifically by quantifying the driver’s behavior while operating the steering wheel and the behavior of the automobile while in motion using… More > Graphic Abstract

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

  • Open Access

    REVIEW

    Analytical Models of Concrete Fatigue: A State-of-the-Art Review

    Xiaoli Wei1, D. A. Makhloof1,2, Xiaodan Ren1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 9-34, 2023, DOI:10.32604/cmes.2022.020160

    Abstract Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a detailed review of fatigue computing… More >

  • Open Access

    ARTICLE

    Recent Advances in Fatigue Detection Algorithm Based on EEG

    Fei Wang1,2, Yinxing Wan1, Man Li1,2, Haiyun Huang1,2, Li Li1, Xueying Hou1, Jiahui Pan1,2, Zhenfu Wen3, Jingcong Li1,2,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3573-3586, 2023, DOI:10.32604/iasc.2023.029698

    Abstract Fatigue is a state commonly caused by overworked, which seriously affects daily work and life. How to detect mental fatigue has always been a hot spot for researchers to explore. Electroencephalogram (EEG) is considered one of the most accurate and objective indicators. This article investigated the development of classification algorithms applied in EEG-based fatigue detection in recent years. According to the different source of the data, we can divide these classification algorithms into two categories, intra-subject (within the same subject) and cross-subject (across different subjects). In most studies, traditional machine learning algorithms with artificial feature extraction methods were commonly used… More >

  • Open Access

    PROCEEDINGS

    Experimental And Numerical Modelling of Cyclic Softening and Damage Behaviors for a Turbine Rotor Material at Elevated Temperature

    M. Li1,2,*, D.H. Li3, Y. Rae1, W. Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08759

    Abstract In order to better understand the physical process of deformation and cyclic softening a 12% Cr martensitic stainless steel FV566 has been cyclically tested at high temperature in strain control. Increase in temperature was found to increase the cyclic life, softening rate and viscous stress magnitude. An increase in the dwell time led to the acceleration of the material degradation. The microstructure changes and dominating deformation mechanisms were investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. The results have revealed a gradual sub-grain coarsening, transformation of lath structure into fine equiaxed sub-grains, and misorientation… More >

Displaying 21-30 on page 3 of 170. Per Page