Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (285)
  • Open Access

    PROCEEDINGS

    A Multiscale Model Predicting the Impact Performance of FiberReinforced Composites

    Xiaoding Wei1,*, Wenqing Zhu1, Junjie Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09998

    Abstract Fiber-reinforced polymer composites with excellent impact energy absorption properties play a pivotal role in the safety of spacecraft, protection of military personnel and equipment, as well as high-speed transportation. Research on the impact performance of composite materials has always relied mainly on expensive experiments and large-scale simulations. In this talk, we will introduce the “dynamic shear-lag model” by extending the classical shear-lag model to the dynamic domain. The dynamic shear-lag model reveals the transfer characteristics of impact energy in the microstructure scale of composite materials, and establishes a quantitative relationship between the " composition-microstructure-performance" of composite materials under impact loading.… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model of microfibers reinforced resin, the… More >

  • Open Access

    ARTICLE

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

    Chunhua Liu1, Dongfang Zou1, Qinqin Huang1, Shang Li2, Xia Zheng1, Xingong Li1,*

    Journal of Renewable Materials, Vol.11, No.10, pp. 3613-3624, 2023, DOI:10.32604/jrm.2023.028111

    Abstract The residual resources of ramie fiber-based textile products were used as raw materials. Ramie fiber felt (RF) was modified by NaClO2 aqueous solution and then impregnated with water-based epoxy resin (WER). RF/WER transparent composite materials were prepared by lamination hot pressing process. The composite materials’color difference, transmittance, haze, density, water absorption, and mechanical properties were determined to assess the effects of NaClO2 treatment and the number of ramie fiber layers on the properties of the prepared composites. The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO2 treatment. With the increase of ramie fiber… More > Graphic Abstract

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

  • Open Access

    ARTICLE

    Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology

    Cut Rahmawati1,2,*, Lia Handayani3, Muhtadin4, Muhammad Faisal4, Muhammad Zardi1, S. M. Sapuan5, Agung Efriyo Hadi6, Jawad Ahmad7, Haytham F. Isleem8

    Journal of Renewable Materials, Vol.11, No.10, pp. 3751-3767, 2023, DOI:10.32604/jrm.2023.028987

    Abstract Waste Glass (WGs) and Coir Fiber (CF) are not widely utilized, even though their silica and cellulose content can be used to create construction materials. This study aimed to optimize mortar compressive strength using Response Surface Methodology (RSM). The Central Composite Design (CCD) was applied to determine the optimization of WGs and CF addition to the mortar compressive strength. Compressive strength and microstructure testing with Scanning Electron Microscope (SEM), Fourier-transform Infrared Spectroscopy (FT-IR), and X-Ray Diffraction (XRD) were conducted to specify the mechanical ability and bonding between the matrix, CF, and WGs. The results showed that the chemical treatment of… More > Graphic Abstract

    Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology

  • Open Access

    ARTICLE

    Study on Mechanical Properties of High Fine Silty Basalt Fiber Shotcrete Based on Orthogonal Design

    Jinxing Wang1,2,3, Yingjie Yang1,2,3, Xiaolin Yang1,2,3, Huazhe Jiao1,2,3,4,*, Qi Wang1,2,3, Liuhua Yang1,2,3, Jianxin Yu1,2,3, Fengbin Chen1,2,3

    Journal of Renewable Materials, Vol.11, No.8, pp. 3351-3370, 2023, DOI:10.32604/jrm.2023.027512

    Abstract In order to improve the comprehensive utilization rate of high fines sand (HFS) produced by the mine, full solid waste shotcrete (HFS-BFRS) was prepared with HFS as fine aggregate in cooperation with basalt fiber (BF). The strength growth characteristics of HFS-BFRS were analyzed. And the fitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given. And based on the orthogonal experimental method, the effects on the compressive strength, splitting tensile strength and flexural strength of HFS-BFRS under the action of different levels of influencing factors were investigated. The effect of three factors… More >

  • Open Access

    ARTICLE

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

    Wenjing Xia1,*, JinHui Wang1, Tao Xu1, Nan Jiang2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3387-3402, 2023, DOI:10.32604/jrm.2023.026971

    Abstract To understand the effects of filler-asphalt ratio on different properties of lignin and polyester fiber reinforced shape memory polyurethane (SMPU)/styrene butadiene styrene (SBS) composite modified asphalt mortar (PSAM), as well as to reveal the reinforcing and toughening mechanisms of lignin and polyester fibers on PSAM, SMPU, SBS and mineral powder were first utilized to prepare PSAM. Then the conventional, rheological and anticracking properties of lignin fiber reinforced PSAM (LFAM) and polyester fiber reinforced PSAM (PFAM) at different filler-asphalt ratios were characterized. Test results indicate that the shear strength, deformation resistance and viscosity are increased after adding 0.8wt% lignin fiber or… More > Graphic Abstract

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

  • Open Access

    ARTICLE

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

    Jiahao Wang1, Jie Zhou2, Zhengping Zhao2,*, Feng Chen1, Mingqiang Zhong1

    Journal of Renewable Materials, Vol.11, No.8, pp. 3309-3332, 2023, DOI:10.32604/jrm.2023.027278

    Abstract Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN) as precursors via electrospinning and freeze-drying successfully. In contrast to conventional carbon covering Si-based anode materials, the C/SiOx structure is made up of PAN-C, a 3D carbon substance, and SiOx loading steadily on PAN-C. The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure. When employed as lithium-ion batteries (LIBs) anode materials, C/SiOx-1% composites were discovered to have an extremely high lithium storage capacity and good cycle performance. At a current density of 100 mA/g, its reversible capacity remained at… More > Graphic Abstract

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

  • Open Access

    ARTICLE

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

    Marwah Subhi Attallah, Reem Alaa Mohammed*, Ruaa Haitham Abdel-Rahim

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2449-2469, 2023, DOI:10.32604/fdmp.2023.027750

    Abstract This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells, walnut shells, and carbon fibers dispersed in a polyester matrix. MINITAB (L16) Taguchi experiments were used to determine the optimal combination of parameters. In particular, an erosion device consisting of a motor with a constant flow rate of 45 L/min, a pump with a diameter of 40 mm, a nozzle with a diameter of 5 mm, and a tank made of “perspex glass” 55 cm long, 30 cm tall, and 25 cm wide was used. The tests were conducted by varying the sample-to-nozzle distance, the… More > Graphic Abstract

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

  • Open Access

    REVIEW

    Research Progress on the Influence of Varying Fiber Contents on Mechanical Properties of Recycled Concrete

    Zhenqing Shi1, Guomin Sun1, Jianyong Pang2,*

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 239-255, 2023, DOI:10.32604/sdhm.2023.022816

    Abstract Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements. However, the mechanical properties of recycled concrete are not as good as those of ordinary concrete. To enhance the former’s performance and increase its popularity and application in engineering fields, notable advances have been made by using steel, synthetic, plant, and mineral fiber materials. These materials are added to recycled concrete to improve its mechanical properties. Studies have shown that (1) steel fibers have a distinct reinforcing effect and improve the strength, toughness, and… More >

  • Open Access

    ARTICLE

    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and 50 freeze-thaw cycles. The damage… More >

Displaying 31-40 on page 4 of 285. Per Page