Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (285)
  • Open Access

    ARTICLE

    STUDY OF THERMAL AND MECHANICAL PROPERTIES OF FIBERGLASS MULTI-WALL CARBON NANOTUBE/EPOXY

    Luay Hashem Abbuda,b,*, Hyder H. Ballac, Ammar F. Abdulwahidd , Zaid Sttar Karimd

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.30

    Abstract This project aims at determining both numerical and experimental to some thermal properties and its thermal expansion coefficient, thermal conductivity and mechanical properties of reinforcement of fiber glass woven with matrix of multi wall carbon nanotube MWCNT / epoxy composite. First, this powder is known to have a very good thermal properties. So, the nanopartical combined with resin has poor thermal properties. Secondly, the development a complete solution for the manufacturing of multi wall carbon nanotube /epoxy composites different volume fraction from 1% to 10% with increment of 2% to compare the result of finite element method by using ANSYS… More >

  • Open Access

    ARTICLE

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

    Zhiyong Yang1, Jiacheng Zhang1, Henglin Xiao1,2, Zhi Chen1,*, Tian Bao1, Yin Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2267-2288, 2023, DOI:10.32604/fdmp.2023.028652

    Abstract The use of carbon-fiber heating cables (CFHC) to achieve effective melting of snow and ice deposited on roads is a method used worldwide. In this study, tensile and compressive tests have been conducted to analyze the mechanical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications. In order to study the aging produced by multiple cycles of heating and cooling, in particular, the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between −20°C and +40°C. Moreover, to evaluate how the strength of the pavement is… More > Graphic Abstract

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

  • Open Access

    ARTICLE

    Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin

    Jinlong Shang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2315-2328, 2023, DOI:10.32604/fdmp.2023.026742

    Abstract In this study, the durability of a new polymer carbon fiber-reinforced epoxy resin used to produce composite material in the aerospace field is investigated through analysis of the corrosion phenomena occurring at the microscopic scale, and the related infrared spectra and thermal properties. It is found that light and heat can contribute to the aging process. In particular, the longitudinal tensile strength displays a non-monotonic trend, i.e., it first increases and then decreases over time. By contrast, the longitudinal compressive and inter-laminar shear strengths do not show significant changes. It is also shown that the inter-laminar shear strength of carbon… More >

  • Open Access

    ARTICLE

    Static Bending Creep Properties of Glass Fiber Surface Composite Wood

    Shang Zhang1, Jie Wang2, Benjamin Rose5, Yushan Yang3, Qingfeng Ding1, Bengang Zhang4,*, Chunlei Dong2,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2881-2891, 2023, DOI:10.32604/jrm.2023.028160

    Abstract To study the static bending creep properties of glass fiber reinforced wood, glass fiber reinforced poplar (GFRP) specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar (Populus euramevicana, P), the performance of Normal Creep (NC) and Mechanical Sorptive Creep (MSC) of GFRP and their influencing factors were tested and analyzed. The test results and analysis show that: (1) The MOE and MOR of Poplar were increased by 17.06% and 10.00% respectively by the glass fiber surface reinforced composite. (2) The surface reinforced P with glass fiber cloth only exhibits the NC pattern of wood… More >

  • Open Access

    ARTICLE

    The Study on Bamboo Microfibers Isolated by Steam Explosion and Their Comprehensive Properties

    Qiushi Li1,2,#, Ronggang Luo1,2,#, Yu Chen3, Jinhui Xiong3, Bei Qiao1, Xijuan Chai1,2, Linkun Xie1,2, Juan Wang3, Lianpeng Zhang1,2,*, Siqun Wang4, Guanben Du1,2, Kaimeng Xu1,2,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2809-2822, 2023, DOI:10.32604/jrm.2023.026184

    Abstract To overcome the shortage of wood resources as well as to develop novel natural fibers materials, the Chimonobambusa quadrangularis (CQ) and Qiongzhuea tumidinoda (QT) planted in Southwest China were effectively isolated by the steam explosion (SE). The fine and uniform bamboo microfibers derived from CQ and QT were obtained, and their smallest average widths were 12.62 μm and 16.05 μm, respectively. The effects of steam explosion on the micro-morphology, chemical composition, thermal stability, crystallinity, surface wettability, and mechanical properties of bamboo microfibers were comprehensively investigated. The results showed that the relative content of cellulose in bamboo microfibers increased but the… More > Graphic Abstract

    The Study on Bamboo Microfibers Isolated by Steam Explosion and Their Comprehensive Properties

  • Open Access

    ARTICLE

    Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber

    Zisheng Yang1, Wendong Li1, Xuelei Cheng1,2,*, Ran Hai1, Shunqun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2119-2130, 2023, DOI:10.32604/fdmp.2023.025444

    Abstract Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber. The tests have been conducted to analyze the liquid plastic limit, the particle distribution and the free expansion rate. The results show that: (1) With an increase in the cement-jute fiber content, the free expansion rate of the modified expansive soil gradually decreases, however, such a rate rebounds when the fiber content exceeds 0.5% and the cement content exceeds 6%. (2) With an increase in the cement percentage, the particle… More >

  • Open Access

    ARTICLE

    Effects of Cationic Surfactant on Fresh and Hardened Properties of Cement-Based Mortar

    Soumaya Zormati, Fadhel Aloulou*, Habib Sammouda

    Journal of Renewable Materials, Vol.11, No.5, pp. 2345-2365, 2023, DOI:10.32604/jrm.2023.026170

    Abstract

    The objective of this study is to analyze the effects of using surfactant (CTAB) and cellulose nanofibers (NFC) as an admixture in cement mortars. We examined composite properties as porosity, compression energy, thermal conductivity and hydration. The results showed that with the addition of 0.7% by weight of NFC per emulsion in the presence of a cationic surfactant (CTAB). The new material produced presented a dry porosity between 4.7% and 4.4%, compressive strength between 9.8 and 22.9 MPa, and thermal conductivity between 0.95 and 2.25 W·m−1·K−1. Thus we show better mechanical and thermal performance than that traditional Portland cement mortar… More > Graphic Abstract

    Effects of Cationic Surfactant on Fresh and Hardened Properties of Cement-Based Mortar

  • Open Access

    ARTICLE

    Potential of Thai Bast Fibers for Injection Molded PLA Composites

    Nina Graupner1,*, Thiprada Poonsawat2, Koranat Narkpiban3,4, Jörg Müssig1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2279-2300, 2023, DOI:10.32604/jrm.2023.025529

    Abstract Thailand has a huge variability of bast fiber plants, some of which have been little researched regarding their applicability in composites. Bast fiber(bundle)s from different species were investigated and incorporated into a polylactide (PLA) matrix by injection molding. Hemp and kenaf were used as well-studied fibers, while roselle, Fryxell and paper mulberry are less extensively characterized. Tensile strength, tensile modulus and interfacial shear strength (IFSS) of single fiber(bundle)s were highest for hemp, followed by kenaf, roselle, Fryxell and paper mulberry. Despite the lower tensile strength and IFSS of paper mulberry, the highest tensile strength was achieved for the paper mulberry/PLA… More > Graphic Abstract

    Potential of Thai Bast Fibers for Injection Molded PLA Composites

  • Open Access

    ARTICLE

    Modeling Date Palm Trunk Fibers (DPTF) Packed Bed Adsorption Performances for Cadmium Removal from Aqueous Wastewater

    Ahmad S. Awad1.*, Banan Hudaib2, Waid Omar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1535-1549, 2023, DOI:10.32604/fdmp.2023.024300

    Abstract In this study, the potential of a low-cost bio-adsorbent, taken directly from Date Palm Trunk Fibers (DPTF) agricultural wastes, for cadmium ions removal from wastewaters is examined. The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters, such as the initial feed concentration, pH, and particle size, constant. The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min. The… More > Graphic Abstract

    Modeling Date Palm Trunk Fibers (DPTF) Packed Bed Adsorption Performances for Cadmium Removal from Aqueous Wastewater

  • Open Access

    ARTICLE

    Experimental Investigation on Fracture Performance of Short Basalt Fiber Bundle Reinforced Concrete

    Jinggan Shao1,2, Jiao Ma1, Renlong Liu1, Ye Liu3, Pu Zhang1,*, Yi Tang4, Yunjun Huang2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 291-305, 2022, DOI:10.32604/sdhm.2022.015097

    Abstract In this paper, a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete (SBFBRC). To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete, some groups are set up, and the P-CMOD curves of each group of specimens are measured, and the fracture toughness and fracture energy of each control group are calculated. The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of the new basalt fiber bundles… More >

Displaying 41-50 on page 5 of 285. Per Page