Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,499)
  • Open Access

    REVIEW

    Hypersonic Flow over V-Shaped Leading Edges: A Review of Shock Interactions and Aerodynamic Loads

    Xinyue Dong1, Wei Zhao1, Jingying Wang1,2,*, Shiyue Zhang1, Yue Zhou3, Xinglian Yang1, Chunhian Lee1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076238 - 06 February 2026

    Abstract For hypersonic air-breathing vehicles, the V-shaped leading edges (VSLEs) of supersonic combustion ramjet (scramjet) inlets experience complex shock interactions and intense aerodynamic loads. This paper provides a comprehensive review of flow characteristics at the crotch of VSLEs, with particular focus on the transition of shock interaction types and the variation of wall heat flux under different freestream Mach numbers and geometric configurations. The mechanisms governing shock transition, unsteady oscillations, hysteresis, and three-dimensional effects in VSLE flows are first examined. Subsequently, thermal protection strategies aimed at mitigating extreme heating loads are reviewed, emphasizing their relevance to More >

  • Open Access

    ARTICLE

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

    Wei Sun1,2, Yanqing Feng1,2,*, Yuan Wang1,2, Zengping Zhao1,2, Qian Wang2, Xiangyun Li3, Dong Feng4

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075630 - 06 February 2026

    Abstract Significant differences exist between deep and medium-shallow coalbed methane (CBM) reservoirs. The unclear understanding of flowback and production behavior severely constrains the development of deep CBM resources. To address this challenge, guided by the gas-liquid two-phase flow theory in ultra-low permeability reservoirs, and integrating theoretical analysis, numerical simulation, and insights from production practices, this study classifies the flowback and production stages of deep CBM well considering the Daning-Jixian Block, Eastern Ordos Basin as a representative case. We summarize the flowback characteristics for each stage and establish a standard flowback production type curve, aiming to guide… More > Graphic Abstract

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

  • Open Access

    ARTICLE

    Low-Reynolds-Number Performance of Micro Radial-Flow Turbines at High Altitudes

    Yanzhao Yang1, Kai Yang2, Junwei Zhang3, Fengsuo Jiang1, Sheng Xu1, Lei Chen4, Jun Bai5, Luyi Lu5, Hua Ji5, Zhihao Jing5, Senhao Wang1, Jingjing Zheng1, Haifeng Zhai1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075227 - 06 February 2026

    Abstract The low-pressure and low-density conditions encountered at high altitudes significantly reduce the operating Reynolds number of micro radial-flow turbines, frequently bringing it below the self-similarity critical threshold of 3.5 × 104. This departure undermines the applicability of conventional similarity-based design approaches. In this study, micro radial-flow turbines with rotor diameters below 50 mm are investigated through a combined approach integrating high-fidelity numerical simulations with experimental validation, aiming to elucidate the mechanisms by which low Reynolds numbers influence aerodynamic and thermodynamic performance. The results demonstrate that decreasing Reynolds number leads to boundary-layer thickening on blade surfaces, enhanced More >

  • Open Access

    ARTICLE

    Novel Analysis of SiO2 + ZnO + MWCNT-Ternary Hybrid Nanofluid Flow in Electromagnetic Squeezing Systems

    Muhammad Hamzah1, Muhammad Ramzan2,*, Abdulrahman A. Almehizia3, Ibrahim Mahariq4,5,6,7,8,*, Laila A. Al-Essa9, Ahmed S. Hassan10

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.070435 - 29 January 2026

    Abstract The present investigation inspects the unsteady, incompressible MHD-induced flow of a ternary hybrid nanofluid made of SiO2 (silicon dioxide), ZnO (zinc oxide), and MWCNT (multi-walled carbon nanotubes) suspended in a water-ethylene glycol base fluid between two perforated squeezing Riga plates. This problem is important because it helps us understand the complicated connections between magnetic fields, nanofluid dynamics, and heat transport, all of which are critical for designing thermal management systems. These findings are especially useful for improving the design of innovative cooling technologies in electronics, energy systems, and healthcare applications. No prior study has… More >

  • Open Access

    REVIEW

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

    Hussain H. Al-Kayiem1,*, Safaa M. Ali2, Sundus S. Al-Azawiey3, Raed A. Jessam3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073303 - 27 January 2026

    Abstract Gas Turbines are among the most important energy systems for aviation and thermal-based power generation. The performance of gas turbine intakes with S-shaped diffusers is vulnerable to flow separation, reversal flow, and pressure distortion, mainly in aggressive S-shaped diffusers. Several methods, including vortex generators and energy promoters, have been proposed and investigated both experimentally and numerically. This paper compiles a review of experimental investigations that have been performed and reported to mitigate flow separation and restore system performance. The operational principles, classifications, design geometries, and performance parameters of S-shaped diffusers are presented to facilitate the… More > Graphic Abstract

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

  • Open Access

    ARTICLE

    Hybrid Runtime Detection of Malicious Containers Using eBPF

    Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2, Seongmin Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074871 - 12 January 2026

    Abstract As containerized environments become increasingly prevalent in cloud-native infrastructures, the need for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The framework simultaneously collects flow-based network… More >

  • Open Access

    ARTICLE

    Research on Dynamic Scheduling Method for Hybrid Flow Shop Order Disturbance Based on IMOGWO Algorithm

    Feng Lv*, Huili Chu, Cheng Yang, Jiajie Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072915 - 12 January 2026

    Abstract To address the issue that hybrid flow shop production struggles to handle order disturbance events, a dynamic scheduling model was constructed. The model takes minimizing the maximum makespan, delivery time deviation, and scheme deviation degree as the optimization objectives. An adaptive dynamic scheduling strategy based on the degree of order disturbance is proposed. An improved multi-objective Grey Wolf (IMOGWO) optimization algorithm is designed by combining the “job-machine” two-layer encoding strategy, the timing-driven two-stage decoding strategy, the opposition-based learning initialization population strategy, the POX crossover strategy, the dual-operation dynamic mutation strategy, and the variable neighborhood search… More >

  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025

    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

Displaying 1-10 on page 1 of 1499. Per Page