Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,234)
  • Open Access

    ARTICLE

    An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage

    Deming Lei, Surui Duan, Mingbo Li*, Jing Wang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 47-63, 2024, DOI:10.32604/cmc.2024.049481

    Abstract Bottleneck stage and reentrance often exist in real-life manufacturing processes; however, the previous research rarely addresses these two processing conditions in a scheduling problem. In this study, a reentrant hybrid flow shop scheduling problem (RHFSP) with a bottleneck stage is considered, and an elite-class teaching-learning-based optimization (ETLBO) algorithm is proposed to minimize maximum completion time. To produce high-quality solutions, teachers are divided into formal ones and substitute ones, and multiple classes are formed. The teacher phase is composed of teacher competition and teacher teaching. The learner phase is replaced with a reinforcement search of the elite class. Adaptive adjustment on… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples, and the… More >

  • Open Access

    ARTICLE

    Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate: An Analytical Strategy

    T. Aghalya, R. Tamizharasi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 431-460, 2024, DOI:10.32604/cmes.2024.046635

    Abstract In this study, the characteristics of heat transfer on an unsteady magnetohydrodynamic (MHD) Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated. The flow was driven by the combined effects of the magnetic field, heat radiation, heat source/sink and chemical reaction. Copper oxide () and titanium oxide () are acknowledged as nanoparticle materials. The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions. Graphical representations are provided to analyze how changes in physical parameters, such as the magnetic field, heat radiation, heat source/sink and chemical reaction, affect the velocity, temperature… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage current is studied. The methanol… More >

  • Open Access

    ARTICLE

    Effects of Flowering Mode and Pollinator Sharing on Reproductive Success in Natural Hybrid of Two Epimedium (Berberidaceae) Species

    Lanying Chen1,2, Qiumei Quan3,*, Yunxiang Li3

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 551-566, 2024, DOI:10.32604/phyton.2024.048103

    Abstract Mediated by pollen flow, natural hybridization is deemed a crucial factor that propels speciation in floral plants. Despite the fact that the diversity of Epimedium species is concentrated mainly in Southwestern China, the potential impact of interspecific pollination on natural hybridization has yet to be empirically scrutinized. To explore this, we studied the flowering period and the visitors of flowers in three frequently overlapping Epimedium species at Jinchengshan National Forest Park, located in Nanchong, Sichuan Province. Additionally, we performed a series of pollination experiments to examine breeding systems and hybrid compatibility. Morphologically, Epimedium pubescens and Epimedium wushanense are clearly distinct… More >

  • Open Access

    ARTICLE

    Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell

    Anastasia Bushueva, Olga Vlasova, Denis Polezhaev*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 847-857, 2024, DOI:10.32604/fdmp.2024.048271

    Abstract The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied. The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem. We consider miscible (water and glycerol) and immiscible (water and high-viscosity silicone oil PMS-1000) fluids under subsonic oscillations perpendicular to the interface. Observations show that the interface shape depends on the amplitude and frequency of oscillations. The interface is undisturbed only in the absence of oscillations. Under small amplitudes, the interface between water and glycerol widens due to mixing. When the… More >

  • Open Access

    ARTICLE

    Linear and Non-Linear Dynamics of Inertial Waves in a Rotating Cylinder with Antiparallel Inclined Ends

    Mariya Shiryaeva1, Mariya Subbotina2, Stanislav Subbotin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 787-802, 2024, DOI:10.32604/fdmp.2024.048165

    Abstract This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends. In this setting, the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius. Three different regimes are found: inertial wave attractor, global oscillations (the cavity’s resonant modes) and regime of symmetric reflection of wave beams. In linear wave regimes, a steady single vortex elongated along the rotation axis is generated. The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign. In non-linear… More >

  • Open Access

    ARTICLE

    Influence of Bottom Inclination on the Flow Structure in a Rotating Convective Layer

    Andrei Vasiliev, Andrei Sukhanovskii*, Elena Popova

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 739-748, 2024, DOI:10.32604/fdmp.2024.048092

    Abstract The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied. Convection is driven by localized cooling at the center of the upper free surface and by rim heating at the bottom near the sidewall. The horizontal temperature difference in a rotating layer leads to the formation of a convective flow with a complex structure. The mean meridional circulation, consisting of three cells, provides a strongly non-uniform differential rotation. As a result of the instability of the main cyclonic zonal flow, the train of baroclinic waves appears in the upper layer. The… More >

  • Open Access

    ARTICLE

    Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump

    He Wang1,*, Ying He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 889-899, 2024, DOI:10.32604/fdmp.2023.042728

    Abstract Magnetohydrodynamic (MHD) induction pumps are contactless pumps able to withstand harsh environments. The rate of fluid flow through the pump directly affects the efficiency and stability of the device. To explore the influence of induction pump settings on the related delivery speed, in this study, a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump. The effects of current intensity, frequency, coil turns and coil winding size on the velocity of the working fluid are analyzed. It is shown that the first three parameters have a… More >

  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic… More >

Displaying 1-10 on page 1 of 1234. Per Page