Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,296)
  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    PROCEEDINGS

    Topology Optimization Method Considering Nonlinear Fatigue Damage Accumulation in Time Domain

    Jinyu Gu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010958

    Abstract In engineering practice, most components are subjected to variable-amplitude cyclic loading, resulting in fatigue damage, which is one of the main forms of damage in engineering structures. Nonlinear damage rule is developed based on linear damage rule, which can predict the fatigue life of structures more accurately. Therefore, we present a topology optimization method considering nonlinear fatigue damage accumulation in the time domain. For the time domain, we adopted the rainflow counting method to evaluate the stress level generated by cyclic loading and the Basquin equation to describe the S-N curve. We applied Morrow's plastic… More >

  • Open Access

    PROCEEDINGS

    Multicomponent Discrete Boltzmann Method for Compressible Reactive Flows with Thermodynamic Nonequilibrium Effects

    Chongdong Lin1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011631

    Abstract In many real-world scenarios, such as high-speed combustion processes and re-entry flows in aerospace vehicles, the flow conditions often involve complex interactions between multiple chemical species and energy modes, leading to thermodynamic nonequilibrium effects. Traditional computational fluid dynamics (CFD) methods struggle to accurately capture these phenomena due to their simplifying assumptions regarding equilibrium thermodynamics. To solve this issue, the Multicomponent Discrete Boltzmann Method (MDBM) is proposed as a numerical approach to simulate compressible reactive flows with thermodynamic nonequilibrium effects. Based on kinetic theory, this method can capture the complex interactions between different species and energy… More >

  • Open Access

    PROCEEDINGS

    Explore Wetting Dynamics at Micro and Nano Scales: Applications and Progress of Long-Needle Atomic Force Microscope

    Dongshi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011291

    Abstract Contact line pinning and the corresponding contact angle hysteresis (CAH) are important interfacial phenomena that occur in nature and play a significant role in many industrial processes, such as surface coating, ink-jet printing, and immersion lithography. Traditional optical methods face limitations due to the optical diffraction limit, making it difficult to directly measure flow and interface phenomena at the micro- or nanoscale. However, atomic force microscopy (AFM) offers a solution by enabling precise manipulation and force measurements at micro and nano scales. The AFM-based microrheometer, which is assembled with a long-needle probe, can be used More >

  • Open Access

    PROCEEDINGS

    Efficient Flow Prediction and Active Control based on Deep Learning Reduced-Order Modeling

    Jiaxin Wu1,2, Yi Zhan1, Min Luo1,*, Boo Cheong Khoo2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011058

    Abstract Research on the mechanism of fluid flows (particularly nonlinear) on solid structures is of great scientific and engineering significance, as well as to implement effective control by using intelligent solid structures (i.e., agents). These dynamical systems involve complex interactions of fluid dynamics and solid mechanics and, thus are typically defined as fluid-structure interaction (FSI) problems. For effective analysis of FSI systems and implementing active control, numerical modeling that couples fluid and solid solvers proves to be an effective approach. However, the efficiency and accuracy of conventional numerical methods for solving such problems are limited due… More >

  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate, Porosity, and Relative Permeability

    Mudasar Zafar1,2,3,*, Hamzah Sakidin1, Abida Hussain1, Loshini Thiruchelvam4, Mikhail Sheremet5, Iskandar Dzulkarnain3, Roslinda Nazar6, Abdullah Al-Yaari1, Rizwan Safdar7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1193-1211, 2024, DOI:10.32604/cmes.2024.049259 - 27 September 2024

    Abstract This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure (cavity) to determine the oil extraction rate using three distinct nanoparticles, SiO2, Al2O3, and Fe2O3, in unconventional oil reservoirs. The simulation is conducted for different parameters of volume fractions, porosities, and mass flow rates to determine the optimal oil recovery. The impact of nanoparticles on relative permeability ( and water is also investigated. The simulation process utilizes the finite volume ANSYS Fluent. The study results showed that when the mass flow rate at the inlet is low, oil recovery goes up. In addition, More >

  • Open Access

    ARTICLE

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

    Sha Liu*, Jianfa Wu, Xuefeng Yang, Weiyang Xie, Cheng Chang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2301-2321, 2024, DOI:10.32604/fdmp.2024.052454 - 23 September 2024

    Abstract The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers. Given challenges such as intricate data analysis, absence of effective assessment methodologies, real-time control strategies, and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage, a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques. The research results show that: (1) The flowback stage of a deep gas well presents… More > Graphic Abstract

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

  • Open Access

    ARTICLE

    High-Precision Flow Numerical Simulation and Productivity Evaluation of Shale Oil Considering Stress Sensitivity

    Mingjing Lu1,2,*, Qin Qian1, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2281-2300, 2024, DOI:10.32604/fdmp.2024.051594 - 23 September 2024

    Abstract Continental shale oil reservoirs, characterized by numerous bedding planes and micro-nano scale pores, feature significantly higher stress sensitivity compared to other types of reservoirs. However, research on suitable stress sensitivity characterization models is still limited. In this study, three commonly used stress sensitivity models for shale oil reservoirs were considered, and experiments on representative core samples were conducted. By fitting and comparing the data, the “exponential model” was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs. To validate the accuracy of the model, a two-phase seepage mathematical model More >

  • Open Access

    ARTICLE

    Reliable iterative techniques for solving the KS equation arising in fluid flow

    Munirah Alotaibi1, Doaa Rizk2, Amal Al−Hanaya1, Ahmed Hagag3

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.1, pp. 1-9, 2024, DOI:10.23967/j.rimni.2024.02.003 - 23 February 2024

    Abstract In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide ωn-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct More >

Displaying 1-10 on page 1 of 1296. Per Page