Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    REVIEW

    High density lipoprotein as a therapeutic target: Focus on its functionality

    LEONARDO GóMEZ ROSSO, BELéN DAVICO, EZEQUIEL LOZANO CHIAPPE, WALTER TETZLAFF, LAURA BOERO, FERNANDO BRITES, MAXIMILIANO MARTíN*

    BIOCELL, Vol.47, No.11, pp. 2361-2383, 2023, DOI:10.32604/biocell.2023.031063

    Abstract Cardiovascular diseases (CVDs) are the leading cause of death globally. CVDs are a group of disorders of the heart and blood vessels and include coronary heart disease, cerebrovascular disease and rheumatic heart disease among other conditions. There are multiple independent risk factors for CVD, including hypertension, age, smoking, insulin resistance, elevated low-density lipoprotein cholesterol (LDL-C) levels, and triglyceride levels. LDL-C levels have traditionally been the target for therapies aimed at reducing CVD risk. High density lipoprotein (HDL) constitutes the only lipoprotein fraction with atheroprotective functions. Early HDL-targeted therapies have focused on increasing HDL-C levels. However, clinical trials have shown that… More > Graphic Abstract

    High density lipoprotein as a therapeutic target: Focus on its functionality

  • Open Access

    ARTICLE

    MHD FREE CONVECTIVE FLOW PAST AN IMPULSIVELY MOVING VERTICAL PLATE WITH RAMPED HEAT FLUX THROUGH POROUS MEDIUM IN THE PRESENCE OF INCLINED MAGNETIC FIELD

    G. S. Setha,*, P. K. Mandala, A. J. Chamkhab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.23

    Abstract A theoretical investigation of unsteady hydromagnetic free convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, optically thick radiating and chemically reactive fluid near an impulsively moving vertical plate with ramped heat flux through fluid saturated porous medium in the presence of inclined magnetic field is carried out. Exact solutions of the governing equations for fluid velocity, fluid temperature and species concentration are obtained by Laplace transform technique. The expressions for the skin-friction, rate of mass transfer at the plate and plate temperature are also derived. Numerical results for fluid velocity, fluid temperature and species concentration… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF NATURAL CONVECTION FROM A PAIR OF HOT CYLINDERS IN A COLD SQUARE ENCLOSURE IN DIFFERENT BOUNDARY CONDITIONS

    Niki Rezazadeh, Rezvan Abdi*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.30

    Abstract This study investigates the heat transfer in the mode of natural convection from a pair of hot cylinders to a cold square enclosure. Effects of boundary conditions of the enclosure on the rate of heat transfer from a pair of isothermal hot cylinders are investigated at a Rayleigh number of 105 . The cylinders are arranged in a horizontal array at the middle height of enclosure. The commercial software, Fluent (V.6.3.26), is utilized to solve the problem using the Finite Volume Method. The streamlines as well as isothermal lines of the problem are reported. Moreover, the local Nusselt number on… More >

  • Open Access

    ARTICLE

    EFFECT OF CHEMICAL REACTION AND RADIATION ON UNSTEADY CONVECTIVE HEAT AND MASS TRANSFER FLOW OF A VISCOUS FLUID IN A VERTICAL WAVY CHANNEL WITH OSCILLATORY FLUX AND HEAT SOURCES

    P.V.S. Kamalakara,*, R. Raghavender Raoa, D.R.V. Prasada Raob

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.2

    Abstract In this paper we discuss the effect of chemical reaction and thermal radiation on unsteady free convective heat and mass transfer flow through a porous medium in a vertical wavy channel. The unsteadiness in the flow is due to the oscillatory flux in the flow region. The coupled equations governing the flow, heat and mass transfer have been solved by using a perturbation technique with the slope  of the wavy wall as the perturbation parameter. The expression for the velocity, the temperature, the concentration, the rate of heat and mass transfer are derived and are analyzed for different variations… More >

  • Open Access

    ARTICLE

    Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory

    Zhongguo Tang1, Haijin Zhuo1, Beian Li1, Xiaotao Ma2, Siyu Zhao2, Kai Tong2,*

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 407-431, 2023, DOI:10.32604/sdhm.2023.026033

    Abstract Corrosion can be very harmful to the service life and several properties of reinforced concrete structures. The metal magnetic memory (MMM) method, as a newly developed spontaneous magnetic flux leakage (SMFL) non-destructive testing (NDT) technique, is considered a potentially viable method for detecting corrosion damage in reinforced concrete members. To this end, in this paper, the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters, and the normal components BBz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory (MMM) method.… More >

  • Open Access

    PROCEEDINGS

    Study of Multi-Group Neutron Diffusion in Nuclear Fuel Pellet based on Peridynamics

    Dahua Hao1, Qiqing Liu1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09301

    Abstract In this study, a method for solving multigroup neutron diffusion equations for nuclear fuel pellets is proposed based on the bond-based PeriDynamic (PD) theory. Firstly, adopting the idea of non-local diffusion, the PD neutron diffusion coefficient is defined and calibrated through the equality of potential with the traditional neutron diffusion coefficient. Comparing the calculation results of the neutron flux distribution of the single-group neutron diffusion by the PD method and the traditional finite element method, the feasibility of the method is verified. Secondly, apply the leakage term in single-group to multigroup and consider the scattering term between different energy groups.… More >

  • Open Access

    ARTICLE

    Speed Measurement Feasibility by Eddy Current Effect in the High-Speed MFL Testing

    Zhaoting Liu1, Jianbo Wu1,*, Sha He2, Xin Rao3, Shiqiang Wang2, Shen Wang1, Wei Wei4

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 299-314, 2023, DOI:10.32604/sdhm.2023.022554

    Abstract It is known that eddy current effect has a great influence on magnetic flux leakage testing (MFL). Usually, contact-type encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals. This speed measurement method is complicated, and inevitable abrasion and occasional slippage will reduce the measurement accuracy. In order to solve this problem, based on eddy current effect due to the relative movement, a speed measurement method is proposed, which is contactless and simple. In the high-speed MFL testing, eddy current induced in the specimen will cause an obvious modification to the applied… More > Graphic Abstract

    Speed Measurement Feasibility by Eddy Current Effect in the High-Speed MFL Testing

  • Open Access

    ARTICLE

    INFLUENCE OF CATTANEO-CHRISTOV HEAT FLUX MODEL ON MHD HYPERBOLIC TANGENT FLUID OVER A MOVING POROUS SURFACE

    Z. Iqbal, Ehtsham Azhar* , E. N. Maraj, Bilal Ahmad

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.25

    Abstract Present investigation represent the study of Cattaneo-Christov heat flux model on boundary layer flow of hyperbolic tangent fluid which is generalized non-Newtonian fluid model over a continuously moving porous surface with a parallel free stream velocity. Mathematical formulation is completed in the presence of Magneto-hydrodynamics (MHD). Suitable relations transform the partial differential equations into the ordinary differential equations. Nonlinear flow analysis is computed and velocity and temperature profiles are obtained by shooting algorithm. Graphs are plotted to analyze the behavior of various involved physical parameters. Furthermore both type of flows Sakaidis ( λ = 1) and Blasius flow (0 ≤… More >

  • Open Access

    ARTICLE

    AN EFFECT OF CATTANEO CHRISTOV HEAT FLUX MODEL FOR EYRING POWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET

    B. Ahmad*, Z. Iqbal

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.22

    Abstract We examine the behavior of Cattaneo-Christov heat flux model for two-dimensional incompressible flow of Eyring Powell fluid passed over an exponentially stretching sheet. Mathematical formulation is performed by assuming boundary layer approximation. Cattaneo Christov heat flux model is applied to analyze the heat transport phenomenon. Thermal relaxation time is envisaged on the layer induced due to boundary. The governing Partial Differential equations are converted into Ordinary differential equations by the appropriate use of similarity transformation. Shooting approach is used to tackle the obtained boundary layer equations. The effects of obtained similarity parameters are plotted and discussed. Computation results reveal that… More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are utilized to resolve the altered… More >

Displaying 11-20 on page 2 of 75. Per Page