Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (902)
  • Open Access

    PROCEEDINGS

    Development of a High-Temperature Resistance SLS Sand Mold Process for Titanium Alloy Casting

    Shouyin Zhang1,*, Zhifeng Xu1, Qiangwei Xiao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012141

    Abstract 3D printing sand mold has been widely used in casting production. However, there exist some problems hindering its application for titanium alloy casting, such as the large amount of gas evolution, cannot withstand high temperature impact, easy to react with titanium alloy melt, etc. This work develops a high-temperature resistance SLS (selective laser sintering) sand mold process by introducing inorganic binder in two different ways, i.e., bi-binder SLS process and SLS infiltration process. After sintering at 1100 ℃, SLS sand mold or core possesses high tensile strength and can be used for titanium alloy casting. More >

  • Open Access

    ARTICLE

    Seed Priming Improves Chilling Stress Tolerance in Rice (Oryza sativa L.) Seedlings

    Md. Tahjib-Ul-Arif1,2,*, Md Asaduzzaman3, Bir Jahangir Shirazy2,4, Md. Shihab Uddine Khan5, A. M. Sajedur Rahman2,6, Yoshiyuki Murata2, Sozan Abdel Hamed7, Arafat Abdel Hamed Abdel Latef8,9,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 3013-3027, 2024, DOI:10.32604/phyton.2024.058710 - 30 November 2024

    Abstract Chilling is one of the major abiotic stresses for plants, especially for rice cultivation. Many essential metabolic processes for growth and development are temperature-dependent. In that case, reducing the negative effects of cold stress using exogenous chemicals is a possible option. Therefore, the current study examined the effects of pre-sowing seed treatment with different chemicals, viz. hydrogen peroxide (H2O2), salicylic acid (SA), calcium chloride (CaCl2), thiourea (TU), and citric acid (CA) on the germination of rice seeds (cv. BRRI dhan28) under chilling environments. Rice seeds were soaked in distilled water (control), 10 mM CA, 2 mM SA,… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification of the GST Gene Family in Loquat (Eriobotrya japonica Lindl.) and Their Expression under Cold Stress with ALA Pretreatment

    Guanpeng Huang1,#, Ti Wu1,2,#, Yinjie Zheng3, Qiyun Gu2, Qiaobin Chen2, Shoukai Lin2,*, Jincheng Wu2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2715-2735, 2024, DOI:10.32604/phyton.2024.056484 - 30 November 2024

    Abstract Loquat (Eriobotrya japonica Lindl.), a rare fruit native to China, has a long history of cultivation in China. Low temperature is the key factor restricting loquat growth and severely affects yield. Low temperature induces the regeneration and metabolism of reduced glutathione (GSH) to alleviate stress damage via the participation of glutathione S-transferases (GSTs) in plants. In this study, 16 GSTs were identified from the loquat genome according to their protein sequence similarity with Arabidopsis GSTs. On the basis of domain characteristics and phylogenetic analysis of AtGSTs, these EjGSTs can be divided into 4 subclasses: Phi, Theta, Tau… More >

  • Open Access

    ARTICLE

    Effects of Water-Fertilizer Coupling on Growth Characteristics and Water Use Efficiency of Camellia petelotii Seedlings

    Liangyu Luo1,#, Ru Li1,#, Daocheng Ma1, Yijin Wang2,*, Linghui Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2927-2947, 2024, DOI:10.32604/phyton.2024.056429 - 30 November 2024

    Abstract Camellia petelotii (Merr.) Sealy is an endangered Chinese native species that originates from Guangxi Zhuang Autonomous Region, China. Previous research demonstrated that proper water and fertilizer treatments could improve the growth and quality of Camellia species. This study uses a three-factor, five-level quadratic rotational combination experimental design to investigate the impact of water-fertilizer coupling on plant growth characteristics and the most suitable treatment for 24-month-old grafted C. petelotii seedlings. The experimental design includes irrigation levels [30%, 40%, 55%, 70%, 80% of field capacity (FC)], nitrogen application (0, 2.17, 5.43, 8.70, 10.87 g·plant−1), and phosphorus application (0, 0.96, 2.40,… More >

  • Open Access

    ARTICLE

    Assessment of Tolerance of Different Varieties of Hulless Barley Seedlings to Low-Temperature Stress

    Ziao Wang1,3,4,#, Likun An1,3,4,#, Yongmei Cui1,2,3,4, Yixiong Bai1,3,4, Guangping Du1, Kunlun Wu1,2,3,4,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2755-2766, 2024, DOI:10.32604/phyton.2024.055852 - 30 November 2024

    Abstract In this study, we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment, identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature, and evaluated the ability of different hulless barley varieties to tolerate low-temperature. The results indicated significant differences in the agronomic and physiological indicators of 60 hulless barley varieties subjected to low-temperature treatment. Most of the agronomic indicators significantly decreased, whereas most of the physiological indicators significantly increased. However, the magnitude of changes in each agronomic and physiological… More >

  • Open Access

    PROCEEDINGS

    Probing Multi-Field Couplings of Smart Materials at the Nanoscale

    Yunya Liu1,*, Dongliang Shan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012494

    Abstract Multi-field coupling affects the evolution of microstructures in smart materials, and also determines the macroscopic performance and application of smart materials. Scanning probe microscopy has emerged as one of the most powerful tools for characterizing and manipulating multi-field coupling responses of smart materials at the nanoscale. In this presentation, I will talk about some new experimental methods developed based on scanning probe microscopy and quantitative analysis, such as local excitation piezoresponse force microscopy method for mechanical properties of multiferroic nanostructures, the high fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy, and the More >

  • Open Access

    ARTICLE

    Impact of Different Rooftop Coverings on Photovoltaic Panel Temperature

    Aws Al-Akam1,*, Ahmed A. Abduljabbar2, Ali Jaber Abdulhamed1

    Energy Engineering, Vol.121, No.12, pp. 3761-3777, 2024, DOI:10.32604/ee.2024.055198 - 22 November 2024

    Abstract Photovoltaic (PV) panels are essential to the global transition towards sustainable energy, offering a clean, renewable source that reduces reliance on fossil fuels and mitigates climate change. High temperatures can significantly affect the performance of photovoltaic (PV) panels by reducing their efficiency and power output. This paper explores the consequential effect of various rooftop coverings on the thermal performance of photovoltaic (PV) panels. It investigates the relationship between the type of rooftop covering materials and the efficiency of PV panels, considering the thermal performance and its implications for enhancing their overall performance and sustainability. The… More >

  • Open Access

    ARTICLE

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

    Inna Bilous1, Dmytro Biriukov1, Dmytro Karpenko2, Tatiana Eutukhova2, Oleksandr Novoseltsev2,*, Volodymyr Voloshchuk1

    Energy Engineering, Vol.121, No.12, pp. 3617-3634, 2024, DOI:10.32604/ee.2024.051684 - 22 November 2024

    Abstract This article focuses on the challenges of modeling energy supply systems for buildings, encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings. Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material, such as for thermal upgrades, which consequently incurs additional economic costs. It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions, considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in… More > Graphic Abstract

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

  • Open Access

    PROCEEDINGS

    Integrated Multiscale Unified Phase-Field Modellings (UPFM)

    Yuhong Zhao1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012951

    Abstract For a long time, the phase-field method has been considered as a mesoscale phenomenological method lacking physical accuracy and unable to be associated with the mechanical/functional properties of materials, etc. Some misunderstandings existing in these viewpoints need to be clarified. Therefore, it is necessary to propose or adopt the perspective of “unified or unifying phase-field modeling (UPFM)” to address these issues, which means that phase-field modeling has multiple unifications. Specifically, the phase-field method is the perfect unity of thermodynamics and kinetics, the unity of multi-scale models from micro- to meso- and then to macroscopic scale, More >

  • Open Access

    PROCEEDINGS

    Analysis of Thermomechanical Delamination Mechanisms in Segmented High-Temperature Protective Coatings and Design Maps for the Durable Coatings

    Biao Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012788

    Abstract Protective coatings play a crucial role in preserving high-temperature engineering components from environmental degradation [1-3]. The durability of these coatings is crucial for maintaining the structural integrity of the components. Introducing a segmented microstructure was recognized as an effective strategy for enhancing the strain tolerance of coatings by mitigating the in-plane stiffness of the coatings, thereby alleviating interface stresses and delamination driving forces. While previous studies on delamination mechanisms in high-temperature protective coatings have predominantly focused on either pure mechanical loading or pure thermal loading conditions (i.e., residual stress) due to their ease of implementation,… More >

Displaying 21-30 on page 3 of 902. Per Page