Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network-Based Travel Route Recommendation

    Sunbin Shin1, Luong Vuong Nguyen2, Grzegorz J. Nalepa3,4, Paulo Novais5, Xuan Hau Pham6, Jason J. Jung1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.070613 - 10 November 2025

    Abstract Recommending personalized travel routes from sparse, implicit feedback poses a significant challenge, as conventional systems often struggle with information overload and fail to capture the complex, sequential nature of user preferences. To address this, we propose a Conditional Generative Adversarial Network (CGAN) that generates diverse and highly relevant itineraries. Our approach begins by constructing a conditional vector that encapsulates a user’s profile. This vector uniquely fuses embeddings from a Heterogeneous Information Network (HIN) to model complex user-place-route relationships, a Recurrent Neural Network (RNN) to capture sequential path dynamics, and Neural Collaborative Filtering (NCF) to incorporate… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    Side-Scan Sonar Image Synthesis Based on CycleGAN with 3D Models and Shadow Integration

    Byeongjun Kim1,#, Seung-Hun Lee2,#, Won-Du Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1237-1252, 2025, DOI:10.32604/cmes.2025.073530 - 26 November 2025

    Abstract Side-scan sonar (SSS) is essential for acquiring high-resolution seafloor images over large areas, facilitating the identification of subsea objects. However, military security restrictions and the scarcity of subsea targets limit the availability of SSS data, posing challenges for Automatic Target Recognition (ATR) research. This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks (CycleGAN) to augment SSS images of key subsea objects, such as shipwrecks, aircraft, and drowning victims. The process begins by constructing 3D models to generate rendered images with realistic shadows from multiple angles. To enhance image quality, a shadow extractor and More >

  • Open Access

    REVIEW

    Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges

    Dawa Chyophel Lepcha1,*, Bhawna Goyal2,3, Ayush Dogra4, Ahmed Alkhayyat5, Prabhat Kumar Sahu6, Aaliya Ali7, Vinay Kukreja4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025

    Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >

  • Open Access

    ARTICLE

    Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network

    Ming Chen1,*, Yanfei Niu2, Ping Qi1, Fucheng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5015-5035, 2025, DOI:10.32604/cmc.2025.067951 - 23 October 2025

    Abstract This research addresses the critical challenge of enhancing satellite images captured under low-light conditions, which suffer from severely degraded quality, including a lack of detail, poor contrast, and low usability. Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks (e.g., spacecraft on-orbit connection, spacecraft surface repair, space debris capture) that rely on clear visual information. Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions: (1) an improved U-Net (IU-Net) generator with multi-scale feature fusion in the contracting path for richer semantic feature… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Method Based on RF-WGAN-TCN

    Ao Zhang1, Hongzhen Xu1,*, Ruxin Liu2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5159-5181, 2025, DOI:10.32604/cmc.2025.067241 - 23 October 2025

    Abstract Credit card fraud is one of the primary sources of operational risk in banks, and accurate prediction of fraudulent credit card transactions is essential to minimize banks’ economic losses. Two key issues are faced in credit card fraud detection research, i.e., data category imbalance and data drift. However, the oversampling algorithm used in current research suffers from excessive noise, and the Long Short-Term Memory Network (LSTM) based temporal model suffers from gradient dispersion, which can lead to loss of model performance. To address the above problems, a credit card fraud detection method based on Random… More >

  • Open Access

    ARTICLE

    Autonomous Cyber-Physical System for Anomaly Detection and Attack Prevention Using Transformer-Based Attention Generative Adversarial Residual Network

    Abrar M. Alajlan1,*, Marwah M. Almasri2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5237-5262, 2025, DOI:10.32604/cmc.2025.066736 - 23 October 2025

    Abstract Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats. Attackers can non-invasively manipulate sensors and spoof controllers, which in turn increases the autonomy of the system. Even though the focus on protecting against sensor attacks increases, there is still uncertainty about the optimal timing for attack detection. Existing systems often struggle to manage the trade-off between latency and false alarm rate, leading to inefficiencies in real-time anomaly detection. This paper presents a framework designed to monitor, predict, and control dynamic systems with a particular emphasis on detecting and adapting to… More >

  • Open Access

    ARTICLE

    Robust Skin Cancer Detection through CNN-Transformer-GRU Fusion and Generative Adversarial Network Based Data Augmentation

    Alex Varghese1, Achin Jain2, Mohammed Inamur Rahman3, Mudassir Khan4,*, Arun Kumar Dubey2, Iqrar Ahmad5, Yash Prakash Narayan1, Arvind Panwar6, Anurag Choubey7, Saurav Mallik8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1767-1791, 2025, DOI:10.32604/cmes.2025.067999 - 31 August 2025

    Abstract Skin cancer remains a significant global health challenge, and early detection is crucial to improving patient outcomes. This study presents a novel deep learning framework that combines Convolutional Neural Networks (CNNs), Transformers, and Gated Recurrent Units (GRUs) for robust skin cancer classification. To address data set imbalance, we employ StyleGAN3-based synthetic data augmentation alongside traditional techniques. The hybrid architecture effectively captures both local and global dependencies in dermoscopic images, while the GRU component models sequential patterns. Evaluated on the HAM10000 dataset, the proposed model achieves an accuracy of 90.61%, outperforming baseline architectures such as VGG16 More >

  • Open Access

    ARTICLE

    Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data

    Huichao Cao1,*, Honghe Du1, Dongnian Jiang1, Wei Li1, Lei Du1, Jianfeng Yang2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1305-1325, 2025, DOI:10.32604/sdhm.2025.066002 - 05 September 2025

    Abstract In the production processes of modern industry, accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring “safe, stable, long-term, full load and optimal” operation of the production process. The benzene-to-ethylene ratio control system is a complex system based on an MPC-PID double-layer architecture. Taking into consideration the interaction between levels, coupling between loops and conditions of incomplete operation data, this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology. Firstly, according to the results of the pre-assessment of the system layers… More >

Displaying 1-10 on page 1 of 124. Per Page