Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Optimal Hybrid Deep Learning Enabled Attack Detection and Classification in IoT Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 99-115, 2023, DOI:10.32604/cmc.2023.034752

    Abstract The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so far by conventional threat detection… More >

  • Open Access

    ARTICLE

    Xception-Fractalnet: Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease

    Mudiyala Aparna, Battula Srinivasa Rao*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6909-6932, 2023, DOI:10.32604/cmc.2023.034796

    Abstract Neurological disorders such as Alzheimer’s disease (AD) are very challenging to treat due to their sensitivity, technical challenges during surgery, and high expenses. The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods. Furthermore, conventional approaches take a lot of time and might not always be precise. Hence, a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD. Therefore in this paper, an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify the stages of AD into… More >

  • Open Access

    ARTICLE

    Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model

    Badriyya B. Al-onazi1, Saud S. Alotaib2, Saeed Masoud Alshahrani3,*, Najm Alotaibi4, Mrim M. Alnfiai5, Ahmed S. Salama6, Manar Ahmed Hamza7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5447-5465, 2023, DOI:10.32604/cmc.2023.033564

    Abstract The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality of the features. In this… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET segmentation model is trained using… More >

  • Open Access

    ARTICLE

    Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique

    Javed Rashid1,2, Imran Khan1, Ghulam Ali3, Shafiq ur Rehman4, Fahad Alturise5, Tamim Alkhalifah5,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1235-1257, 2023, DOI:10.32604/cmc.2023.032005

    Abstract The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments, soil conditions and higher human consumption. It is cultivated in vast areas of Asian and Non-Asian countries, including Pakistan. The guava plant is vulnerable to diseases, specifically the leaves and fruit, which result in massive crop and profitability losses. The existing plant leaf disease detection techniques can detect only one disease from a leaf. However, a single leaf may contain symptoms of multiple diseases. This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features

    S. Prasanna Bharathi1,2, S. Srinivasan1,*, G. Chamundeeswari1, B. Ramesh1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 579-594, 2023, DOI:10.32604/csse.2023.027592

    Abstract Now a days, Remote Sensing (RS) techniques are used for earth observation and for detection of soil types with high accuracy and better reliability. This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics. There are a few challenges that is present in soil classification using image enhancement such as, locating and plotting soil boundaries, slopes, hazardous areas, drainage condition, land use, vegetation etc. There are some traditional approaches which involves few drawbacks such as, manual involvement which results in inaccuracy due to human interference, time consuming, inconsistent prediction etc. To… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Method for Diagnosis of Cucurbita Leaf Diseases

    V. Nirmala1,*, B. Gomathy2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2585-2601, 2023, DOI:10.32604/csse.2023.027512

    Abstract In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method based on Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model

    Hadil Shaiba1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Radwa Marzouk4, Heba Mohsen5, Manar Ahmed Hamza6,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6425-6441, 2022, DOI:10.32604/cmc.2022.031625

    Abstract Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords, account identifiers, bank details, etc. In general, these kinds of cyberattacks are made at users through phone calls, emails, or instant messages. The anti-phishing techniques, currently under use, are mainly based on source code features that need to scrape the webpage content. In third party services, these techniques check the classification procedure of phishing Uniform Resource Locators (URLs). Even though Machine Learning (ML) techniques have been lately utilized in the identification of phishing, they still need to undergo feature engineering since… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning-Based Adaptive Multiple Access Schemes Underwater Wireless Networks

    D. Anitha1,*, R. A. Karthika2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2463-2477, 2023, DOI:10.32604/iasc.2023.023361

    Abstract Achieving sound communication systems in Under Water Acoustic (UWA) environment remains challenging for researchers. The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts. The development of machine and deep learning algorithms has reduced the burden of achieving reliable and good communication schemes in the underwater acoustic environment. This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA), Time Division Multiple Access(TDMA), and Orthogonal Frequency Division Multiplexing(OFDM) techniques using the hybrid combination of the convolutional neural networks(CNN) and ensemble single… More >

  • Open Access

    ARTICLE

    HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework

    Magdy M. Fadel1,*, Sally M. El-Ghamrawy2, Amr M. T. Ali-Eldin1, Mohammed K. Hassan3, Ali I. El-Desoky1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2293-2312, 2022, DOI:10.32604/cmc.2022.028287

    Abstract Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of failure, if it fails, the… More >

Displaying 11-20 on page 2 of 37. Per Page