Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (319)
  • Open Access

    PROCEEDINGS

    Multiscale Modelling of Normal Fault Rupture-Soil-Foundation Interaction

    Lifan Chen1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09709

    Abstract A multiscale approach [1] that couples the finite-element method (FEM) and the discrete-element method (DEM) is employed to model and analyse the earthquake fault rupture-soil-foundation interaction (FR-SFI) problem. In the approach, the soil constitutive responses are obtained from DEM solutions of representative volume elements (RVEs) embedded at the FEM integration points so as to effectively bypass the phenomenological hypotheses in conventional FEM simulations. The fault rupture surfaces and shear localization patterns under normal faults with or without foundation atop have been well captured by the multiscale approach and verified with available centrifuge experimental [2] and numerical results [3]. By examining… More >

  • Open Access

    PROCEEDINGS

    Mechanism of the Passive Tap-Scan Damage Detection Method

    Zhuyou Hu1, Ping Lin2,3, He Guo2,3, Yumei Zhang2,3, Zhihai Xiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09475

    Abstract In recent years, the vehicle scanning method for bridge inspection has drawn much attention by researchers because of its simple operation and high efficiency [1]. Besides the natural frequency, modal modes and other information of bridges, damage can also be detected in this way [2]. For example, we proposed the passive tap-scan damage detection method [3], which scans the bridge with the tapping force generated by a toothed wheel, mimicking the hunting behavior of woodpeckers. In this talk, we will discuss two critical aspects related to the mechanism of this method. One is the quantitative relationship between the vehicle acceleration… More >

  • Open Access

    PROCEEDINGS

    Mechanism of the Passive Tap-Scan Damage Detection Method

    Zhuyou Hu1, Ping Lin2,3, He Guo2,3, Yumei Zhang2,3, Zhihai Xiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09475

    Abstract In recent years, the vehicle scanning method for bridge inspection has drawn much attention by researchers because of its simple operation and high efficiency [1]. Besides the natural frequency, modal modes and other information of bridges, damage can also be detected in this way [2]. For example, we proposed the passive tap-scan damage detection method [3], which scans the bridge with the tapping force generated by a toothed wheel, mimicking the hunting behavior of woodpeckers. In this talk, we will discuss two critical aspects related to the mechanism of this method. One is the quantitative relationship between the vehicle acceleration… More >

  • Open Access

    PROCEEDINGS

    MPI Massive Parallelization of Smoothed Particle Hydrodynamics for Simulation of Impact and Explosion Problems

    Jiahao Liu1, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010056

    Abstract The dynamic failure process of structures under impact and explosive loading is very common in both military and industrial fields. However, the conventional mesh-based method has some shortcomings, such as large mesh distortion and sliding surface treatment. Some typical phenomena are difficult to be simulated. The smoothed particle hydrodynamics (SPH) method has natural advantages in treating large material deformations in impact and explosion problems [1]. To make the SPH method suitable for the impact and explosion problems, it is also improved by some treatments [2] to avoid inherent stress instability and unphysical oscillation. However, numerical calculations for 3D engineering applications,… More >

  • Open Access

    PROCEEDINGS

    Study on Crack Propagation Behavior of Concrete with Water Fracture Interactions

    Wenhu Zhao1,2,*, Chengbin Du2, Xiaocui Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010048

    Abstract Concrete structures such as offshore platforms, costal and port structures, dams, etc., are often submerged in water [1]. The water within concreter pores or cracks has a great influence on crack propagation behavior [2,3]. Several wedge-splitting experiments of compact specimens are conducted with a designed sealing device to study the water effects on concrete crack propagation. Different water pressures and different loading rates are considered loading on the pre-crack surfaces and waterproof strain gauges are stuck along the crack path to observe the fracture process during the experiments. Water pressure values on crack surfaces are recorded by diffused silicon water… More >

  • Open Access

    PROCEEDINGS

    Understanding of Airfoil Characteristics at High Mach-Low Reynolds Numbers

    Zhaolin Chen1,*, Xiaohui Wei1, Tianhang Xiao1, Ning Qin2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09976

    Abstract A computational study has been conducted on various airfoils to simulate flows at low Reynolds numbers 17,000 and 21,000 with Mach number changes from 0.25 to 0.85 to provide understanding and guidance for Mars rotory wing designs. The computational fluid dynamics tool used in this study is a Reynolds-averaged Navier–Stokes solver with a transition model (k-ω SST γ-Reθ). The airfoils investigated in this study include NACA airfoils (4, 5, and 6% camber), UltraThin airfoils, and thin cambered plates (3% camber, but various maximum camber locations). Airfoils were examined for lift and drag performance as well as surface pressure and flow… More >

  • Open Access

    PROCEEDINGS

    Particle Dynamics in a Low-Reynolds-Number Fluid Under Spherical Confinement

    Gaofeng Chen1,2, Xikai Jiang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09877

    Abstract Dynamics of a single particle suspended in a low-Reynolds-number fluid under spherical confinement was studied numerically. We calculated hydrodynamic mobilities of a sphere, a prolate spheroid, and an oblate spheroid parallel and transverse to particle-cavity line of centres. The mobilities show maximum in the cavity centre and decay as the particle moves towards the no-slip wall. For prolate and oblate spheroids, their mobilities are also affected by the angle between particle's axis of revolution and the particle-cavity line of centres due to particle anisotropy. It was observed that the effect of particle anisotropy becomes stronger as the confinement level increases.… More >

  • Open Access

    PROCEEDINGS

    Fluid-Structure Interaction in Arterial Network and Implications for Blood Pressure Measurement– A Numerical Study

    Peishuo Wu1, Chi Zhu1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI: 10.32604/icces.2023.09869

    Abstract Central blood pressure, i.e., the blood pressure near the heart, is an important physiological indicator of the cardiovascular function of a patient. However, direct measurement of this quantity is rarely carried out due to the invasive nature of the procedure. Instead, blood pressure at the arm (brachial artery) measured through an inflatable cuff is commonly used to represent or estimate the central blood pressure. On the other hand, the aortic pressure propagates downstream in the form of pulse waves, which have to pass through a complex and compliant vascular network to reach the brachial artery. Therefore, the efficacy of cuff-measured… More >

  • Open Access

    ARTICLE

    Effect of Online Social Networking on Emotional Status and Its Interaction with Offline Reality during the Early Stage of the COVID-19 Pandemic in China

    Xiaolin Lu1,*, Xiaolei Miao2

    International Journal of Mental Health Promotion, Vol.25, No.9, pp. 1041-1052, 2023, DOI:10.32604/ijmhp.2023.030232

    Abstract Background: During the early stages of the COVID-19 pandemic in China, social interactions shifted to online spaces due to lock-downs and social distancing measures. As a result, the impact of online social networking on users’ emotional status has become stronger than ever. This study examines the association between online social networking and Internet users’ emotional status and how offline reality affects this relationship. Methods: The study utilizes cross-sectional online survey data (n = 3004) and Baidu Migration big data from the first 3 months of the pandemic. Two dimensions of online networking are measured: social support and information sources. Results:More > Graphic Abstract

    Effect of Online Social Networking on Emotional Status and Its Interaction with Offline Reality during the Early Stage of the COVID-19 Pandemic in China

  • Open Access

    ARTICLE

    A Robust Approach for Detection and Classification of KOA Based on BILSTM Network

    Abdul Qadir1, Rabbia Mahum1, Suliman Aladhadh2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1365-1384, 2023, DOI:10.32604/csse.2023.037033

    Abstract A considerable portion of the population now experiences osteoarthritis of the knee, spine, and hip due to lifestyle changes. Therefore, early treatment, recognition and prevention are essential to reduce damage; nevertheless, this time-consuming activity necessitates a variety of tests and in-depth analysis by physicians. To overcome the existing challenges in the early detection of Knee Osteoarthritis (KOA), an effective automated technique, prompt recognition, and correct categorization are required. This work suggests a method based on an improved deep learning algorithm that makes use of data from the knee images after segmentation to detect KOA and its severity using the Kellgren-Lawrence… More >

Displaying 1-10 on page 1 of 319. Per Page