Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (434)
  • Open Access

    REVIEW

    Hypersonic Flow over V-Shaped Leading Edges: A Review of Shock Interactions and Aerodynamic Loads

    Xinyue Dong1, Wei Zhao1, Jingying Wang1,2,*, Shiyue Zhang1, Yue Zhou3, Xinglian Yang1, Chunhian Lee1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076238 - 06 February 2026

    Abstract For hypersonic air-breathing vehicles, the V-shaped leading edges (VSLEs) of supersonic combustion ramjet (scramjet) inlets experience complex shock interactions and intense aerodynamic loads. This paper provides a comprehensive review of flow characteristics at the crotch of VSLEs, with particular focus on the transition of shock interaction types and the variation of wall heat flux under different freestream Mach numbers and geometric configurations. The mechanisms governing shock transition, unsteady oscillations, hysteresis, and three-dimensional effects in VSLE flows are first examined. Subsequently, thermal protection strategies aimed at mitigating extreme heating loads are reviewed, emphasizing their relevance to More >

  • Open Access

    ARTICLE

    Tissue-Specific Transcriptomic Responses and Viral Accumulation in Lily Cultivars Infected with Cucumber Mosaic Virus

    Yun-Im Kang1, Youn Jung Choi1, Su Young Lee1, Young-Ran Lee1, Ki-Byung Lim2,3, Yun-Jae Ahn2,3,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.073138 - 30 January 2026

    Abstract Cucumber mosaic virus (CMV) threatens lily production by reducing floral quality and enabling carry-over via infected planting stock. To explore tissue-specific host responses, we analyzed a legacy, single-replicate RNA-seq dataset from two cultivars, ‘Cancun’ and ‘Connecticut King’ (CK), profiling leaf (source) and bulb (sink) tissues at 0 and 28 days post-inoculation (dpi), alongside leaf DAS-ELISA. Principal component analysis indicated that tissue identity dominated the transcriptome (PC1 = 47.7%), with CMV treatment driving within-tissue shifts over time. Exploratory Gene Ontology/KEGG summaries and a focused marker panel revealed a consistent split: in leaves, genes linked to jasmonate/WRKY-associated… More >

  • Open Access

    ARTICLE

    Three-Dimensional Hybrid Model for Wave Interaction with Porous Layer

    Divya Ramesh, Sriram Venkatachalam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069854 - 29 January 2026

    Abstract A hybrid model combining Fully Non-Linear Potential Flow Theory (FNPT) based on the Finite Element Method (FEM) and the Unified Navier-Stokes equation, using the 3D Improved Meshless Local Petrov Galerkin method with Rankine Source (IMLPG_R), is developed to study wave interactions with a porous layer. In previous studies, the above formulations are applied to wave interaction with fixed cylindrical structures. The present study extends this framework by integrating a unified governing equation within the hybrid modeling approach to capture the dynamics of wave interaction with porous media. The porous layers are employed to replicate the… More >

  • Open Access

    ARTICLE

    Linxing-Shenfu Gangue Interaction Coal Seam Hydraulic Fracture Cross-Layer Expansion Mechanism

    Li Wang1, Xuesong Xing1, Yanan Hou1, Heng Wen1, Ying Zhu1, Jingyu Zi1, Qingwei Zeng2,3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.068653 - 27 January 2026

    Abstract The deep coal reservoir in Linxing-Shenfu block of Ordos Basin is an important part of China’s coalbed methane resources. In the process of reservoir reconstruction, the artificial fracture morphology of coal seam with gangue interaction is significantly different, which affects the efficient development of coalbed methane resources in this area. In this paper, the surface outcrop of Linxing-Shenfu block is selected, and three kinds of interaction modes between gangue and coal seam are set up, including single-component coal rock sample, coal rock sample with different thicknesses of gangue layer and coal rock sample with different… More >

  • Open Access

    ARTICLE

    A REST API Fuzz Testing Framework Based on GUI Interaction and Specification Completion

    Zonglin Li1,#, Xu Zhao2,#, Yan Cao2,*, Yazhe Li3, Yihong Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071511 - 12 January 2026

    Abstract With the rapid development of Internet technology, REST APIs (Representational State Transfer Application Programming Interfaces) have become the primary communication standard in modern microservice architectures, raising increasing concerns about their security. Existing fuzz testing methods include random or dictionary-based input generation, which often fail to ensure both syntactic and semantic correctness, and OpenAPI-based approaches, which offer better accuracy but typically lack detailed descriptions of endpoints, parameters, or data formats. To address these issues, this paper proposes the APIDocX fuzz testing framework. It introduces a crawler tailored for dynamic web pages that automatically simulates user interactions More >

  • Open Access

    ARTICLE

    VMFD: Virtual Meetings Fatigue Detector Using Eye Polygon Area and Dlib Shape Indicator

    Hafsa Sidaq1, Lei Wang1, Sghaier Guizani2,*, Hussain Haider3, Ateeq Ur Rehman4,*, Habib Hamam5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071254 - 12 January 2026

    Abstract Numerous sectors, such as education, the IT sector, and corporate organizations, transitioned to virtual meetings after the COVID-19 crisis. Organizations now seek to assess participants’ fatigue levels in online meetings to remain competitive. Instructors cannot effectively monitor every individual in a virtual environment, which raises significant concerns about participant fatigue. Our proposed system monitors fatigue, identifying attentive and drowsy individuals throughout the online session. We leverage Dlib’s pre-trained facial landmark detector and focus on the eye landmarks only, offering a more detailed analysis for predicting eye opening and closing of the eyes, rather than focusing… More >

  • Open Access

    REVIEW

    Implementation of Human-AI Interaction in Reinforcement Learning: Literature Review and Case Studies

    Shaoping Xiao1,*, Zhaoan Wang1, Junchao Li2, Caden Noeller1, Jiefeng Jiang3, Jun Wang4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-62, 2026, DOI:10.32604/cmc.2025.072146 - 09 December 2025

    Abstract The integration of human factors into artificial intelligence (AI) systems has emerged as a critical research frontier, particularly in reinforcement learning (RL), where human-AI interaction (HAII) presents both opportunities and challenges. As RL continues to demonstrate remarkable success in model-free and partially observable environments, its real-world deployment increasingly requires effective collaboration with human operators and stakeholders. This article systematically examines HAII techniques in RL through both theoretical analysis and practical case studies. We establish a conceptual framework built upon three fundamental pillars of effective human-AI collaboration: computational trust modeling, system usability, and decision understandability. Our… More >

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025

    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study

    Chen-Xi Hu1, Wu-Gui Jiang1,*, Jin Wang1, Tian-Yu He2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068655 - 10 November 2025

    Abstract THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics (MD) simulations, with a particular focus on the novel interplay between crystallographic orientation, grain boundary (GB) proximity, and pore characteristics (size/location). This study compares single-crystal nickel models along [100], [110], and [111] orientations with equiaxed polycrystalline models containing 0, 1, and 2.5 nm pores in surface and subsurface configurations. Our results reveal that crystallographic anisotropy manifests as a 24.4% higher elastic modulus and 22.2% greater hardness in [111]-oriented single crystals compared to [100]. Pore-GB synergistic effects are found More >

Displaying 1-10 on page 1 of 434. Per Page