Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (391)
  • Open Access

    ARTICLE

    Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer

    XIANG LI1,#, WENKE JIN2,#, LIFENG WU2, HUAN WANG1, XIN XIE1, WEI HUANG1,*, BO LIU2,*

    Oncology Research, Vol.33, No.1, pp. 67-81, 2025, DOI:10.32604/or.2024.055921 - 20 December 2024

    Abstract Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways. Methods: Here, we employed Naive Bayes, Decision Tree, and k-Nearest Neighbors to elucidate the complex PPI… More >

  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    REVIEW

    Gasotransmitters as Key Members of the Signaling Network Regulating Stomatal Response: Interaction with Other Molecules

    Yuriy E. Kolupaev1,2,*, Tetiana O. Yastreb1,*, Alexander P. Dmitriev3

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3151-3195, 2024, DOI:10.32604/phyton.2024.057922 - 31 December 2024

    Abstract Stomatal closure, which serves to limit water loss, represents one of the most rapid and critical reactions of plants, occurring not only in response to drought but also to a range of other stressors, including salinity, extreme temperatures, heavy metals, gaseous toxicants, and pathogen infection. ABA is considered to be the main regulator of stomatal movements in plants under abiotic stress. In the last two decades, however, the list of plant hormones and other physiologically active substances that affect stomatal status has expanded considerably. It is believed that stomata are regulated by a complex multicomponent… More >

  • Open Access

    REVIEW

    Unraveling the molecular crossroads: T2DM and Parkinson’s disease interactions

    TINGTING LIU#, XIANGRUI KONG#, JIANSHE WEI*

    BIOCELL, Vol.48, No.12, pp. 1735-1749, 2024, DOI:10.32604/biocell.2024.056272 - 30 December 2024

    Abstract Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. In recent times, an elevated risk of Parkinson’s disease (PD) development among individuals with T2DM has become evident. However, the molecular mechanisms that underpin the interplay between T2DM and the pathogenesis of PD remain to be elucidated. Nevertheless, recent epidemiological studies have underscored several shared molecular pathways that are crucial for normal cellular function and are also associated with the progression and etiology of both T2DM and PD. This review encapsulates some of the shared pathophysiological mechanisms, including genetic risk factors, More >

  • Open Access

    ARTICLE

    Evaluating the Effectiveness of Graph Convolutional Network for Detection of Healthcare Polypharmacy Side Effects

    Omer Nabeel Dara1,*, Tareq Abed Mohammed2, Abdullahi Abdu Ibrahim1

    Intelligent Automation & Soft Computing, Vol.39, No.6, pp. 1007-1033, 2024, DOI:10.32604/iasc.2024.058736 - 30 December 2024

    Abstract Healthcare polypharmacy is routinely used to treat numerous conditions; however, it often leads to unanticipated bad consequences owing to complicated medication interactions. This paper provides a graph convolutional network (GCN)-based model for identifying adverse effects in polypharmacy by integrating pharmaceutical data from electronic health records (EHR). The GCN framework analyzes the complicated links between drugs to forecast the possibility of harmful drug interactions. Experimental assessments reveal that the proposed GCN model surpasses existing machine learning approaches, reaching an accuracy (ACC) of 91%, an area under the receiver operating characteristic curve (AUC) of 0.88, and an More >

  • Open Access

    ARTICLE

    Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO2

    Jiarui Cheng1,*, Yirong Yang1, Sai Ye2, Yucheng Luo1, Bilian Peng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2887-2906, 2024, DOI:10.32604/fdmp.2024.057056 - 23 December 2024

    Abstract During the implementation of CO2 fracturing for oil and gas development, the force transfer effect caused by the unsteady flow of high-pressure CO2 fluid can lead to forced vibration of the tubing and ensuing structural fatigue. In this study, a forced vibration analysis of tubing under CO2 fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics (MOC). The results show that for every 1 m3/min increase in pumping displacement, the fluid flow rate increases up to 3.67 m/s. The flow pressure in the… More > Graphic Abstract

    Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO<sub>2</sub>

  • Open Access

    PROCEEDINGS

    Boundary Data Immersion Method for the Simulation of Fluid-Structure Interaciton Based on DGM

    Yuxiang Peng1,*, Pengnan Sun1, Niannian Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011902

    Abstract Immersed boundary method (IBM) has been widely applied in the simulation of fluid-structure interaction problems. The traditional direct force model is less accurate, and the sharp-interface approaches involve complex topological operations which are not conducive to dealing with complex structures. The boundary data immersion method (BDIM) is a new fluid-structure coupling scheme that does not need to cut the mesh and can be extended to reach second-order accuracy. However, the traditional boundary data immersion method needs special treatment to deal with the sharp corners of the structure. In the present work, the volume fraction of More >

  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    PROCEEDINGS

    Dynamics of Bubble-Particle Interaction at Different Distances Under Ultrasonic Excitation

    Jie Wang1,*, Jingyu Gu1, Shuai Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012184

    Abstract The interaction between the particle and the bubble under the ultrasonic wave excitation plays a pivotal role in various applications such as targeted therapy, ultrasonic cleaning, ultrasonography, and microbubble motors. When the particle is in close proximity or even attached to the bubble, a strong fluid-structure interaction occurs, significantly influencing the particle propulsion. The attachment of the bubble to the particle results in distinct bubble pulsation patterns and particle acceleration mechanisms from the non-contact state. Thus, we propose a fluid-structure interaction model based on the boundary integral method (BIM) to comprehensively consider the distance between More >

  • Open Access

    PROCEEDINGS

    Microcarrier Systems for Cell Co-Culture Reveal Cell-Cell Interactions

    Zhanwu Hou1, Linfeng Xu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-0, 2024, DOI:10.32604/icces.2024.012892

    Abstract The cell-cell interaction between immune cells and tumor cells in the tumor microenvironment plays an important role in the genesis and development of tumors. However, due to the lack of methods to systematically identify the interaction between the two, the specific molecular mechanisms involved are not well understood. The microfluidic platform provides a high-throughput and precise method for studying cell interactions in microreactive systems. However, the traditional platform for studying cell interactions is the closed droplet system, which is easy to cause the consumption of nutrients and the accumulation of wastes, thus interfering with cell… More >

Displaying 21-30 on page 3 of 391. Per Page