Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (336)
  • Open Access

    ARTICLE

    Dynamics of Machinery 2D Elastic Casing, with Central Hole, Subject to an In-Plane Deflection-Dependent Rotating Load

    F. M. A. El-Saeidy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 33-42, 2000, DOI:10.3970/cmes.2000.001.335

    Abstract In rotating radial ball bearings supported on elastic casings with the bearing outer ring lightly fitted into the housing, the force due to the ball elastic contact is indeed a rotating load rolling over the housing. For accurate estimation of the dynamic deformations of the casing annulus (hole), which in turn affect the bearing tolerances and hence the magnitudes of the generated forces, effect of the load rotation (motion) should be considered. Considering the integral casing and the outer ring to be a plate, an isoparametric plane stress finite-element (FE) based analytical procedure is presented for the dynamic analysis of… More >

  • Open Access

    ARTICLE

    Thermomagnetic Convection-Surface Radiation Interactions in Microgravity Environment

    Saber Hamimid1, Messaoud Guellal2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.4, pp. 137-153, 2016, DOI:10.32604/fdmp.2016.012.137

    Abstract The numerical study of combined thermo-magnetic convection and surface radiation is presented in this paper and computations are performed for a paramagnetic fluid filled square cavity whose four walls have the same emissivity, placed in a micro-gravity environment (g ≈0), and subjected to various strong non-uniform magnetic field gradients. The vertical walls were isothermal, and the horizontal walls were adiabatic. Finite volume method based on the concepts of staggered grid and SIMPLER algorithm has been applied, and the view factors were determined by analytical formula. Representative results, illustrating the effect of magnetic field strength on streamlines, temperature contours and Nusselt… More >

  • Open Access

    ARTICLE

    Preliminary Validation of Fluid-Structure Interaction Modeling for Hypersonic Deployable Re-Entry Systems

    P. Pasolini1,2, R. Savino1, F. Franco1, S. De Rosa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 301-324, 2015, DOI:10.3970/fdmp.2015.011.301

    Abstract The aim of the present work is to provide a first attempt to set an aero-thermo-elastic methodology for deployable atmospheric re-entry decelerators operating at high Mach number and high dynamic pressure. Because of the severity of re-entry conditions such as high temperatures, high pressures and high velocities, the behavior of their flexible structures is a hard target to assess. In this paper a partitioned Fluid Structure Interaction (FSI) approach based on the integration of different commercial software (STAR-CCM+ and ABAQUS) is presented. In order to validate the specific codes and the overall strategy for structural and fluid dynamics analyses of… More >

  • Open Access

    ARTICLE

    Simulation of Thermal Fluid-structure Interaction Phenomena in a Liquid Sodium Porous System

    Yan Shen1, Hong Zhang1,2,3, Hui Xu1, Tong Bai1, Ping Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 63-81, 2014, DOI:10.3970/fdmp.2014.010.063

    Abstract Single-unit and multi-unit models of porous media (metal felts) have been used to investigate thermal fluid-structure interaction phenomena in a liquid sodium system. Micro-scale aspects have been studied via numerical simulations. The permeability of metal felts has been measured experimentally to verify the reliability of the models used. This integrated approach has allowed a proper evaluation of the interdependencies among phenomena on different scales (including relevant information on skeleton deformation and pressure drop as a function of different parameters). Pressure drop generally increases with velocity and heat flux for both laminar and turbulent flows. The final deformation is greater when… More >

  • Open Access

    ARTICLE

    Inclination Impact on the Mass Transfer Process Resulting from the Interaction of Twin Tandem Jets with a Crossflow

    A. Radhouane1, N. Mahjoub Said1, H. Mhiri1, G. Le Palec2, P. Bournot2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 385-398, 2010, DOI:10.3970/fdmp.2010.006.385

    Abstract "Twin jets in crossflow" is a complex configuration that raises an increasing interest due to its presence in various common applications such as chimney stacks, film cooling, VSTOL aircrafts, etc... In the present paper, the twin jets were arranged inline with an oncoming crossflow;they were also inclined which resulted in similar elliptic cross sections of the nozzles' exits. The exploration of the flows in interaction was carried out numerically by means of the finite volume method together with the second order turbulent closure model, namely the Reynolds stress Model (RSM), and a non uniform grid system particularly refined near the… More >

  • Open Access

    ARTICLE

    Evaluation of some of the existing models for droplet and spray/wall interactions

    Davood Kalantari1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 169-182, 2013, DOI:10.3970/fdmp.2013.009.169

    Abstract In this study, a critical summary of existing spray/wall interaction models is given in synergy with a review of available experimental data. In particular, special attention is devoted to the limitations, difficulties and complexities of the most used approaches in the literatures. An attempt is also made to indicate the bottlenecks and criticalities which typically arise when investigators try to extend results obtained for isolated droplets to the more complex dynamics produced by spray impacts. More >

  • Open Access

    ARTICLE

    Nonlinear Development of Interfacial Instability in a Thin Two-Layer Liquid Film in the Presence of Van-Der-Waals Interactions

    A. A. Nepomnyashchy1,2, I. B. Simanovskii1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.3, pp. 185-198, 2008, DOI:10.3970/fdmp.2008.004.185

    Abstract The development of instabilities under the joint action of the van der Waals forces and Marangoni stresses in a two-layer film on a heated or cooled substrate is considered. It is found that heating from below leads to the acceleration of the decomposition, decrease of the characteristic lateral size of structures, and the increase of the droplets heights. Heating from above leads to slowing down the instability rate and eventually to a complete suppression of the instability. More >

  • Open Access

    ARTICLE

    Thermal Communication between Two Vertical Systems of Free and Forced Convection via Heat Conduction across a Separating Wall

    M. Mosaad2, A. Ben-Nakhi2, M. H. Al-Hajeri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 301-314, 2005, DOI:10.3970/fdmp.2005.001.301

    Abstract This work deals with the problem of thermal interaction between two fluid media at two different bulk temperatures and separated by a vertical plate. The problem is analyzed by taking into account the heat conduction across the separating plate. The flow configuration considered is one in which the two vertical boundary layers of free and forced convection developed on plate sides are in parallel flow. The dimensionless parameters governing the thermal interaction mechanisms are analytically deduced. The obtained results are presented in graphs to demonstrate the heat transfer characteristics of investigated phenomenon. The work reports a means to estimate the… More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin Method for the Analysis of Cracks in the Isotropic Functionally Graded Material

    K.Y. Liu1,2,3, S.Y. Long1,2,4, G.Y. Li1

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 43-58, 2008, DOI:10.3970/cmc.2008.007.043

    Abstract A meshless local Petrov-Galerkin method (MLPG) [[Atluri and Zhu (1998)] for the analysis of cracks in isotropic functionally graded materials is presented. The meshless method uses the moving least squares (MLS) to approximate the field unknowns. The shape function has not the Kronecker Delta properties for the trial-function-interpolation, and a direct interpolation method is adopted to impose essential boundary conditions. The MLPG method does not involve any domain and singular integrals to generate the global effective stiffness matrix if body force is ignored; it only involves a regular boundary integral. The material properties are smooth functions of spatial coordinates and… More >

  • Open Access

    ARTICLE

    Characterization of Loading Rate Effects on the Interactions between Crack Growth and Inclusions in Cementitious Material

    Shuai Zhou3,4, Xiaoying Zhuang1,2,*

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 417-446, 2018, DOI:10.32604/cmc.2018.01742

    Abstract The microcapsule-enabled cementitious material is an appealing building material and it has been attracting increasing research interest. By considering microcapsules as dissimilar inclusions in the material, this paper employs the discrete element method (DEM) to study the effects of loading rates on the fracturing behavior of cementitious specimens containing the inclusion and the crack. The numerical model was first developed and validated based on experimental results. It is then used to systematically study the initiation, the propagation and the coalescence of cracks in inclusion-enabled cementitious materials. The study reveals that the crack propagation speed, the first crack initiation stress, the… More >

Displaying 321-330 on page 33 of 336. Per Page