Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Automated Leukemia Screening and Sub-types Classification Using Deep Learning

    Chaudhary Hassan Abbas Gondal1,*, Muhammad Irfan2, Sarmad Shafique3, Muhammad Salman Bashir4, Mansoor Ahmed1, Osama M.Alshehri5, Hassan H. Almasoudi5, Samar M. Alqhtani6, Mohammed M. Jalal7, Malik A. Altayar7, Khalaf F. Alsharif8

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3541-3558, 2023, DOI:10.32604/csse.2023.036476 - 03 April 2023

    Abstract Leukemia is a kind of blood cancer that damages the cells in the blood and bone marrow of the human body. It produces cancerous blood cells that disturb the human’s immune system and significantly affect bone marrow’s production ability to effectively create different types of blood cells like red blood cells (RBCs) and white blood cells (WBC), and platelets. Leukemia can be diagnosed manually by taking a complete blood count test of the patient’s blood, from which medical professionals can investigate the signs of leukemia cells. Furthermore, two other methods, microscopic inspection of blood smears… More >

  • Open Access

    ARTICLE

    MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning Method to Classify Leukemia Form Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2039-2058, 2023, DOI:10.32604/csse.2023.036985 - 09 February 2023

    Abstract Leukemia, often called blood cancer, is a disease that primarily affects white blood cells (WBCs), which harms a person’s tissues and plasma. This condition may be fatal when if it is not diagnosed and recognized at an early stage. The physical technique and lab procedures for Leukaemia identification are considered time-consuming. It is crucial to use a quick and unexpected way to identify different forms of Leukaemia. Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment. Various deep-learning… More >

  • Open Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658 - 09 February 2023

    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

  • Open Access

    ARTICLE

    A model based on eight iron metabolism-related genes accurately predicts acute myeloid leukemia prognosis

    ZHANSHU LIU1, XI HUANG2,*

    BIOCELL, Vol.47, No.3, pp. 593-605, 2023, DOI:10.32604/biocell.2023.024148 - 03 January 2023

    Abstract Purpose: Iron metabolism maintains the balance between iron absorption and excretion. Abnormal iron metabolism can cause numerous diseases, including tumor. This study determined the iron metabolism-related genes (IMRGs) signature that can predict the prognosis of acute myeloid leukemia (AML). The roles of these genes in the immune microenvironment were also explored. Methods: A total of 514 IMRGs were downloaded from the Molecular Characteristics Database (MSigDB). IMRGs related to AML prognosis were identified using Cox regression and LASSO analyses and were used to construct the risk score model. AML patients were stratified into high-risk groups (cluster 1)… More >

  • Open Access

    ARTICLE

    A Construction of Object Detection Model for Acute Myeloid Leukemia

    K. Venkatesh1,*, S. Pasupathy1, S. P. Raja2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 543-560, 2023, DOI:10.32604/iasc.2023.030701 - 29 September 2022

    Abstract The evolution of bone marrow morphology is necessary in Acute Myeloid Leukemia (AML) prediction. It takes an enormous number of times to analyze with the standardization and inter-observer variability. Here, we proposed a novel AML detection model using a Deep Convolutional Neural Network (D-CNN). The proposed Faster R-CNN (Faster Region-Based CNN) models are trained with Morphological Dataset. The proposed Faster R-CNN model is trained using the augmented dataset. For overcoming the Imbalanced Data problem, data augmentation techniques are imposed. The Faster R-CNN performance was compared with existing transfer learning techniques. The results show that the More >

  • Open Access

    ARTICLE

    Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis

    Ghada Emam Atteia*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 361-376, 2023, DOI:10.32604/csse.2023.029597 - 16 August 2022

    Abstract Acute Lymphoblastic Leukemia (ALL) is a fatal malignancy that is featured by the abnormal increase of immature lymphocytes in blood or bone marrow. Early prognosis of ALL is indispensable for the effectual remediation of this disease. Initial screening of ALL is conducted through manual examination of stained blood smear microscopic images, a process which is time-consuming and prone to errors. Therefore, many deep learning-based computer-aided diagnosis (CAD) systems have been established to automatically diagnose ALL. This paper proposes a novel hybrid deep learning system for ALL diagnosis in blood smear images. The introduced system integrates… More >

  • Open Access

    RESIDENT’S CORNER

    Chronic lymphocytic leukemia/small lymphocytic lymphoma presenting as acute renal failure

    Zachary Snow1, Lauren S. Jones2, Javier Piraino1, Matthew Sterling1

    Canadian Journal of Urology, Vol.29, No.1, pp. 11036-11039, 2022

    Abstract Lymphoma of the urinary bladder is quite rare, accounting for a small percentage of all bladder neoplasms. Here we discuss the case of a 68-year-old male patient who initially presented with acute renal failure and severe bilateral hydronephrosis on ultrasound. Cross-sectional imaging further revealed a diffusely thickened bladder wall with extensive retroperitoneal and mesenteric lymphadenopathy. Bladder biopsies ultimately led to a diagnosis of stage IV chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). This is a rare instance of upper tract dilatation being the first sign of a widely disseminated hematologic malignancy. More >

  • Open Access

    ARTICLE

    Identification of lncRNAs associated with the progression of acute lymphoblastic leukemia using a competing endogenous RNAs network

    SHAHRAM NEKOEIAN1, TAHEREH ROSTAMI2, AMIR NOROUZY3, SAFIN HUSSEIN1,4, GHOLAMREZA TAVOOSIDANA1, BAHRAM CHAHARDOULI2, SHAHRBANO ROSTAMI2,*, YAZDAN ASGARI5, ZAHRA AZIZI1,*

    Oncology Research, Vol.30, No.6, pp. 259-268, 2022, DOI:10.32604/or.2022.027904 - 09 February 2023

    Abstract Acute lymphoblastic leukemia (ALL) is a malignancy of bone marrow lymphoid precursors. Despite effective treatments, the causes of its progression or recurrence are still unknown. Finding prognostic biomarkers is needed for early diagnosis and more effective treatment. This study was performed to identify long non-coding RNAs (lncRNAs) involved in ALL progression by constructing a competitive endogenous RNA (ceRNA) network. These lncRNAs may serve as potential new biomarkers in the development of ALL. The GSE67684 dataset identified changes in lncRNAs and mRNAs involved in ALL progression. Data from this study were re-analyzed, and probes related to… More >

  • Open Access

    ARTICLE

    Classification of Bone Marrow Cells for Medical Diagnosis of Acute Leukemia

    Khadija Khan, Samabia Tehsin*

    Journal on Artificial Intelligence, Vol.4, No.1, pp. 1-13, 2022, DOI:10.32604/jai.2022.028092 - 16 May 2022

    Abstract Leukemia is the cancer that starts in the blood cells due to the excess production of immature leucocytes that replace the cells with normal blood cells. Physicians rely on their experience to determine the type and subtype of Leukemia from the blood sample. Most people are misdiagnosed when it comes to its subtypes, the error rates can be up to 40% during the classification process. That too depends on the expertise of the physician. This research represents a Convolutional Neural Network based medical image classifier. The proposed technique can classify Leukemia and its five subtypes. More >

  • Open Access

    ARTICLE

    Cat-Inspired Deep Convolutional Neural Network for Bone Marrow Cancer Cells Detection

    R. Kavitha1,*, N. Viswanathan2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1305-1320, 2022, DOI:10.32604/iasc.2022.022816 - 08 February 2022

    Abstract Bone marrow cancer is considered to be the most complex and dangerous disease which results due to an uncontrolled growth of white blood cells called leukocytes. Acute Lymphoblastic Leukemia (ALL) and Multiple Myeloma (MM) are considered to be important categories of bone cancers, which induces a larger number of cancer cells in the bone marrow, results in preventing the production of healthy blood cells. The advent of Artificial Intelligence, especially machine and deep learning, has expanded humanity’s capacity to analyze and detect these increasingly complex diseases. But, accurate detection of cancer cells and reducing the… More >

Displaying 21-30 on page 3 of 70. Per Page