Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Fusion Strategy for Improving Medical Image Segmentation

    Fahad Alraddady1, E. A. Zanaty2, Aida H. Abu bakr3, Walaa M. Abd-Elhafiez4,5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3627-3646, 2023, DOI:10.32604/cmc.2023.027606

    Abstract In this paper, we combine decision fusion methods with four meta-heuristic algorithms (Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm, modification of Cuckoo Search (CS McCulloch) algorithm and Genetic algorithm) in order to improve the image segmentation. The proposed technique based on fusing the data from Particle Swarm Optimization (PSO), Cuckoo search, modification of Cuckoo Search (CS McCulloch) and Genetic algorithms are obtained for improving magnetic resonance images (MRIs) segmentation. Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods. In order to obtain parts of the points that determine similar… More >

  • Open Access

    ARTICLE

    An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization

    Jun Liu1, Geng Yuan2, Changdi Yang2, Houbing Song3, Liang Luo4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1571-1587, 2023, DOI:10.32604/cmes.2022.023195

    Abstract The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research. The safety criteria for medical imaging are highly stringent, and models are required for an explanation. However, existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs. Thus, the interpretability of CNNs has come into the spotlight. Since medical imaging data are limited, many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public ImageNet datasets by the transfer learning method. Unfortunately, this generates many unreliable parameters and makes… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification

    Abdullah A. Asiri1, Bilal Khan2, Fazal Muhammad3,*, Shams ur Rahman4, Hassan A. Alshamrani1, Khalaf A. Alshamrani1, Muhammad Irfan5, Fawaz F. Alqhtani1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 299-312, 2023, DOI:10.32604/iasc.2023.032426

    Abstract In the medical profession, recent technological advancements play an essential role in the early detection and categorization of many diseases that cause mortality. The technique rising on daily basis for detecting illness in magnetic resonance through pictures is the inspection of humans. Automatic (computerized) illness detection in medical imaging has found you the emergent region in several medical diagnostic applications. Various diseases that cause death need to be identified through such techniques and technologies to overcome the mortality ratio. The brain tumor is one of the most common causes of death. Researchers have already proposed various models for the classification… More >

  • Open Access

    ARTICLE

    Multi-Level Deep Generative Adversarial Networks for Brain Tumor Classification on Magnetic Resonance Images

    Abdullah A. Asiri1, Ahmad Shaf2,*, Tariq Ali2, Muhammad Aamir2, Ali Usman2, Muhammad Irfan3, Hassan A. Alshamrani1, Khlood M. Mehdar4, Osama M. Alshehri5, Samar M. Alqhtani6

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 127-143, 2023, DOI:10.32604/iasc.2023.032391

    Abstract The brain tumor is an abnormal and hysterical growth of brain tissues, and the leading cause of death affected patients worldwide. Even in this technology-based arena, brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones. The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data. To overcome the highlighted issue, a Generative Adversarial Network (GAN) deep learning technique in which two neural networks… More >

  • Open Access

    ARTICLE

    A Deep Learning for Alzheimer’s Stages Detection Using Brain Images

    Zahid Ullah1,*, Mona Jamjoom2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1457-1473, 2023, DOI:10.32604/cmc.2023.032752

    Abstract Alzheimer’s disease (AD) is a chronic and common form of dementia that mainly affects elderly individuals. The disease is dangerous because it causes damage to brain cells and tissues before the symptoms appear, and there is no medicinal or surgical treatment available yet for AD. AD causes loss of memory and functionality control in multiple degrees according to AD’s progression level. However, early diagnosis of AD can hinder its progression. Brain imaging tools such as magnetic resonance imaging (MRI), computed tomography (CT) scans, positron emission tomography (PET), etc. can help in medical diagnosis of AD. Recently, computer-aided diagnosis (CAD) such… More >

  • Open Access

    ARTICLE

    Epileptic Seizures Diagnosis Using Amalgamated Extremely Focused EEG Signals and Brain MRI

    Farah Mohammad*, Saad Al-Ahmadi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 623-639, 2023, DOI:10.32604/cmc.2023.032552

    Abstract

    There exists various neurological disorder based diseases like tumor, sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the most common neurological illness in humans, comparable to stroke. Epilepsy is a severe chronic neurological illness that can be discovered through analysis of the signals generated by brain neurons and brain Magnetic resonance imaging (MRI). Neurons are intricately coupled in order to communicate and generate signals from human organs. Due to the complex nature of electroencephalogram (EEG) signals and MRI’s the epileptic seizures detection and brain related problems diagnosis becomes a challenging task. Computer based techniques and machine learning models… More >

  • Open Access

    ARTICLE

    Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN

    Zakarya Farea Shaaf1,*, Muhammad Mahadi Abdul Jamil1, Radzi Ambar1, Ahmed Abdu Alattab2,3, Anwar Ali Yahya3,4, Yousef Asiri4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1819-1835, 2023, DOI:10.32604/cmc.2023.031900

    Abstract The automatic localization of the left ventricle (LV) in short-axis magnetic resonance (MR) images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest (ROI). The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration. Nevertheless, this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices. Thus, this study proposed a region-based convolutional network (Faster R-CNN) for the LV localization from… More >

  • Open Access

    ARTICLE

    Adaptive Fixed-Time Synchronization of Delayed Memristor-Based Neural Networks with Discontinuous Activations

    Tianyuan Jia1, Xiangyong Chen1,2,*, Xiurong Yao1,*, Feng Zhao1, Jianlong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 221-239, 2023, DOI:10.32604/cmes.2022.020780

    Abstract Fixed-time synchronization (FTS) of delayed memristor-based neural networks (MNNs) with discontinuous activations is studied in this paper. Both continuous and discontinuous activations are considered for MNNs. And the mixed delays which are closer to reality are taken into the system. Besides, two kinds of control schemes are proposed, including feedback and adaptive control strategies. Based on some lemmas, mathematical inequalities and the designed controllers, a few synchronization criteria are acquired. Moreover, the upper bound of settling time (ST) which is independent of the initial values is given. Finally, the feasibility of our theory is attested by simulation examples. More >

  • Open Access

    ARTICLE

    Brain Tumor Detection and Classification Using PSO and Convolutional Neural Network

    Muhammad Ali1, Jamal Hussain Shah1, Muhammad Attique Khan2, Majed Alhaisoni3, Usman Tariq4, Tallha Akram5, Ye Jin Kim6, Byoungchol Chang7,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4501-4518, 2022, DOI:10.32604/cmc.2022.030392

    Abstract Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for… More >

  • Open Access

    ARTICLE

    Analysis of Brain MRI: AI-Assisted Healthcare Framework for the Smart Cities

    Walid El-Shafai1,*, Randa Ali1, Ahmed Sedik2, Taha El-Sayed Taha1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1843-1856, 2023, DOI:10.32604/iasc.2023.019198

    Abstract The use of intelligent machines to work and react like humans is vital in emerging smart cities. Computer-aided analysis of complex and huge MRI (Magnetic Resonance Imaging) scans is very important in healthcare applications. Among AI (Artificial Intelligence) driven healthcare applications, tumor detection is one of the contemporary research fields that have become attractive to researchers. There are several modalities of imaging performed on the brain for the purpose of tumor detection. This paper offers a deep learning approach for detecting brain tumors from MR (Magnetic Resonance) images based on changes in the division of the training and testing data… More >

Displaying 21-30 on page 3 of 100. Per Page