Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access

    ARTICLE

    Extreme Learning Bat Algorithm in Brain Tumor Classification

    G. R. Sreekanth1, Adel Fahad Alrasheedi2, K. Venkatachalam3, Mohamed Abouhawwash4,5,*, S. S. Askar2

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 249-265, 2022, DOI:10.32604/iasc.2022.024538

    Abstract Brain tumor is considered as an unusual cell that presents and grows in the brain. Similarly, it may lead to cancerous or non-cancerous. So, to improve the survival rate of the patient and to give the best treatment at the earliest, it’s very necessary for early prediction of tumor. Accurate classification of tumor in the brain is important for improving the diagnosis. In accordance with that, various research programs are invited for the better treatment of the patients. Machine Learning (ML) algorithms are applied to help the health associates for the classification of brain tumor and present their diagnosis. This… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

    Areej A. Malibari1, Reem Alshahrani2, Fahd N. Al-Wesabi3,*, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Anwer Mustafa Hilal5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3799-3813, 2022, DOI:10.32604/cmc.2022.026131

    Abstract Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the… More >

  • Open Access

    ARTICLE

    Flexible Memristive Devices Based on Graphene Quantum-Dot Nanocomposites

    Sung Won Hwang, Dae-Ki Hong*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3283-3297, 2022, DOI:10.32604/cmc.2022.025931

    Abstract Artificial neural networks (ANNs) are attracting attention for their high performance in various fields, because increasing the network size improves its functioning. Since large-scale neural networks are difficult to implement on custom hardware, a two-dimensional (2D) structure is applied to an ANN in the form of a crossbar. We demonstrate a synapse crossbar device from recent research by applying a memristive system to neuromorphic chips. The system is designed using two-dimensional structures, graphene quantum dots (GQDs) and graphene oxide (GO). Raman spectrum analysis results indicate a D-band of 1421 cm−1 that occurs in the disorder; band is expressed as an atomic… More >

  • Open Access

    ARTICLE

    A Post-Processing Algorithm for Boosting Contrast of MRI Images

    B. Priestly Shan1, O. Jeba Shiney1, Sharzeel Saleem2, V. Rajinikanth3, Atef Zaguia4, Dilbag Singh5,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2749-2763, 2022, DOI:10.32604/cmc.2022.023057

    Abstract Low contrast of Magnetic Resonance (MR) images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis. State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images. Drastic changes in brightness features, induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings. To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well. This method termed as Power-law and Logarithmic Modification-based Histogram Equalization (PLMHE) partitions the histogram of the image into two… More >

  • Open Access

    ARTICLE

    Multilayer Functional Connectome Fingerprints: Individual Identification via Multimodal Convolutional Neural Network

    Yuhao Chen1, Jiajun Liu1, Yaxi Peng1, Ziyi Liu2, Zhipeng Yang1,*

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1501-1516, 2022, DOI:10.32604/iasc.2022.026346

    Abstract As a neural fingerprint, functional connectivity networks (FCNs) have been used to identify subjects from group. However, a number of studies have only paid attention to cerebral cortex when constructing the brain FCN. Other areas of the brain also play important roles in brain activities. It is widely accepted that the human brain is composed of many highly complex functional networks of cortex. Moreover, recent studies have confirmed correlations between signals of cortex and white matter (WM) bundles. Therefore, it is difficult to reflect the functional characteristics of the brain through a single-layer FCN. In this paper, a multilayer FCN… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation with Intuitionist Possibilistic Fuzzy Clustering and Morphological Operations

    J. Anitha*, M. Kalaiarasu

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 363-379, 2022, DOI:10.32604/csse.2022.022402

    Abstract Digital Image Processing (DIP) is a well-developed field in the biological sciences which involves classification and detection of tumour. In medical science, automatic brain tumor diagnosis is an important phase. Brain tumor detection is performed by Computer-Aided Diagnosis (CAD) systems. The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes. Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research. Brain tumor diagnosis mainly performed for obtaining exact location, orientation and area of abnormal tissues. Cancer and edema regions inference from brain… More >

  • Open Access

    ARTICLE

    A Two-Tier Framework Based on GoogLeNet and YOLOv3 Models for Tumor Detection in MRI

    Farman Ali1, Sadia Khan2, Arbab Waseem Abbas2, Babar Shah3, Tariq Hussain2, Dongho Song4,*, Shaker EI-Sappagh5,6, Jaiteg Singh7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 73-92, 2022, DOI:10.32604/cmc.2022.024103

    Abstract Medical Image Analysis (MIA) is one of the active research areas in computer vision, where brain tumor detection is the most investigated domain among researchers due to its deadly nature. Brain tumor detection in magnetic resonance imaging (MRI) assists radiologists for better analysis about the exact size and location of the tumor. However, the existing systems may not efficiently classify the human brain tumors with significantly higher accuracies. In addition, smart and easily implementable approaches are unavailable in 2D and 3D medical images, which is the main problem in detecting the tumor. In this paper, we investigate various deep learning… More >

  • Open Access

    ARTICLE

    Hybrid GrabCut Hidden Markov Model for Segmentation

    Soobia Saeed1,*, Afnizanfaizal Abdullah1, N. Z. Jhanjhi2, Mehmood Naqvi3, Mehedi Masud4, Mohammed A. AlZain5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 851-869, 2022, DOI:10.32604/cmc.2022.024085

    Abstract Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify in MRI such as low-grade tumors or cerebral spinal fluid (CSF) leaks in the brain. The aim of the study is to address the problems associated with detecting the low-grade tumor and CSF in brain is difficult in magnetic resonance imaging (MRI) images and another problem also relates to efficiency and less execution time for segmentation of medical images. For tumor and CSF segmentation using trained light field database (LFD) datasets of MRI images.… More >

  • Open Access

    ARTICLE

    Bendlets and Ensemble Learning Based MRI Brain Classification System

    R. Muthaiyan1,*, M. Malleswaran2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 891-907, 2022, DOI:10.32604/iasc.2022.024635

    Abstract Brain tumours are composed of cells where the growth is unrestrained. Though the incidence rate is lower, it is a serious threatening disease to human lives. For effective treatment, an accurate and quick method to classify Magnetic Resonance Imaging (MRI) is required. To identify the meaningful patterns and to interpret images, pattern recognition algorithms are developed. In this work, an extension of Shearlet transform named Bendlets is employed to interpret MRI images and decision making is done by ensemble learning using k-Nearest Neighbor (kNN), Naive Bayesian and Support Vector Machine (SVM) classifiers. The Bendlet and Ensemble Learning (BEL) based system… More >

  • Open Access

    META-ANALYSIS

    Prevalence of Bicuspid Aortic Valve in Turner Syndrome Patients Receiving Cardiac MRI and CT: A Meta-Analysis

    Pengzhu Li, Martina Bačová, Robert Dalla-Pozza, Nikolaus Alexander Haas, Felix Sebastian Oberhoffer*

    Congenital Heart Disease, Vol.17, No.2, pp. 129-141, 2022, DOI:10.32604/CHD.2022.018300

    Abstract Turner syndrome (TS) is a rare disorder affecting 25–50 in 100000 female newborns. Bicuspid aortic valve (BAV) is assumed to be the most common congenital heart defect (CHD) in TS. In literature, reported BAV prevalence in TS ranges between 14% and 34%. The specific BAV prevalence in TS is still unknown. The aim of this study was to give a more precise estimation of BAV prevalence in TS by conducting a meta-analysis of TS-studies, which detected BAV by either cardiac magnetic resonance imaging (MRI) or cardiac computed tomography (CT). We searched PubMed, Cochrane Library, and Web of Science databases to… More >

Displaying 41-50 on page 5 of 101. Per Page