Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (141)
  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention

    Seyong Jin1, Muhammad Fayaz2, L. Minh Dang3, Hyoung-Kyu Song3, Hyeonjoon Moon2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070667 - 10 November 2025

    Abstract Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics. While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information, existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors. In order to address these challenges and maximize the performance of brain tumor segmentation, this research introduces a novel SwinUNETR-based model by integrating a new decoder block, the Hierarchical Channel-wise Attention Decoder (HCAD), into a powerful SwinUNETR encoder. The HCAD… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    A Comprehensive Brain MRI and Neurodevelopmental Dataset in Children with Tetralogy of Fallot

    Yang Xu1,#, Yaqi Zhang2,#, Meijiao Zhu3, Pengcheng Xue4, Siyu Ma1, Di Yu1, Liang Hu1, Yuxi Zhang1, Wei Peng1, Jirong Qi1, Xuyun Wen4, Ming Yang3, Xuming Mo1,2,5,*

    Congenital Heart Disease, Vol.20, No.5, pp. 559-570, 2025, DOI:10.32604/chd.2025.072242 - 30 November 2025

    Abstract Background: The life-course management of children with tetralogy of Fallot (TOF) has focused on demonstrating brain structural alterations, developmental trajectories, and cognition-related changes that unfold over time. Methods: We introduce an magnetic resonance imaging (MRI) dataset comprising TOF children who underwent brain MRI scanning and cross-sectional neurocognitive follow-up. The dataset includes brain three-dimensional T1-weighted imaging (3D-T1WI), three-dimensional T2-weighted imaging (3D-T2WI), and neurodevelopmental evaluations using the Wechsler Preschool and Primary Scale of Intelligence–Fourth Edition (WPPSI-IV). Results: Thirty-one children with TOF (age range: 4–33 months; 18 males) were recruited and completed corrective surgery at the Children’s Hospital of Nanjing More >

  • Open Access

    ARTICLE

    Channel-Attention DenseNet with Dilated Convolutions for MRI Brain Tumor Classification

    Abdu Salam1, Mohammad Abrar2, Raja Waseem Anwer3, Farhan Amin4,*, Faizan Ullah5, Isabel de la Torre6,*, Gerardo Mendez Mezquita7, Henry Fabian Gongora7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025

    Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >

  • Open Access

    ARTICLE

    AI-based detection of MRI-invisible prostate cancer with nnU-Net

    Jingcheng Lyu1,2,#, Ruiyu Yue1,2,#, Boyu Yang1,2, Xuanhao Li1,2, Jian Song1,2,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 445-456, 2025, DOI:10.32604/cju.2025.068853 - 30 October 2025

    Abstract Objectives: This study aimed to develop an artificial intelligence (AI)-based image recognition system using the nnU-Net adaptive neural network to assist clinicians in detecting magnetic resonance imaging (MRI)-invisible prostate cancer. The motivation stems from the diagnostic challenges, especially when MRI findings are inconclusive (Prostate Imaging Reporting and Data System [PI-RADS] score ≤ 3). Methods: We retrospectively included 150 patients who underwent systematic prostate biopsy at Beijing Friendship Hospital between January 2013 and January 2023. All were pathologically confirmed to have clinically significant prostate cancer, despite negative findings on preoperative MRI. A total of 1475 MRI… More >

  • Open Access

    ARTICLE

    DA-ViT: Deformable Attention Vision Transformer for Alzheimer’s Disease Classification from MRI Scans

    Abdullah G. M. Almansour1,*, Faisal Alshomrani2, Abdulaziz T. M. Almutairi3, Easa Alalwany4, Mohammed S. Alshuhri1, Hussein Alshaari5, Abdullah Alfahaid4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2395-2418, 2025, DOI:10.32604/cmes.2025.069661 - 31 August 2025

    Abstract The early and precise identification of Alzheimer’s Disease (AD) continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases. This study presents a novel Deformable Attention Vision Transformer (DA-ViT) architecture that integrates deformable Multi-Head Self-Attention (MHSA) with a Multi-Layer Perceptron (MLP) block for efficient classification of Alzheimer’s disease (AD) using Magnetic resonance imaging (MRI) scans. In contrast to traditional vision transformers, our deformable MHSA module preferentially concentrates on spatially pertinent patches through learned offset predictions, markedly diminishing processing demands while improving localized feature representation. DA-ViT contains only More >

  • Open Access

    ARTICLE

    Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing

    Khalil Ibrahim Lairedj1, Zouaoui Chama1, Amina Bagdaoui1, Samia Larguech2, Younes Menni3,4,*, Nidhal Becheikh5, Lioua Kolsi6,*, Badr M. Alshammari7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2419-2443, 2025, DOI:10.32604/cmes.2025.069396 - 31 August 2025

    Abstract Brain tumor segmentation from Magnetic Resonance Imaging (MRI) supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans, making it a crucial yet challenging task. Supervised models such as 3D U-Net perform well in this domain, but their accuracy significantly improves with appropriate preprocessing. This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model (GGMM) to T1 contrast-enhanced MRI scans from the BraTS 2020 dataset. The Expectation-Maximization (EM) algorithm is employed to estimate parameters for four tissue classes, generating a More >

  • Open Access

    ARTICLE

    An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images

    Fatma M. Talaat1,2,*, Mohamed Salem1, Mohamed Shehata3,4,*, Warda M. Shaban5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2325-2358, 2025, DOI:10.32604/cmes.2025.067195 - 31 August 2025

    Abstract The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists. The rise in patient numbers has substantially elevated the data processing volume, making conventional methods both costly and inefficient. Recently, Artificial Intelligence (AI) has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame. Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors. This paper proposes a new model based on AI, called the Brain Tumor Detection (BTD)… More >

  • Open Access

    REVIEW

    From Spatial Domain to Patch-Based Models: A Comprehensive Review and Comparison of Multimodal Medical Image Denoising Algorithms

    Apoorav Sharma1, Ayush Dogra2,*, Bhawna Goyal3, Archana Saini2, Vinay Kukreja2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 367-481, 2025, DOI:10.32604/cmc.2025.066481 - 29 August 2025

    Abstract To enable proper diagnosis of a patient, medical images must demonstrate no presence of noise and artifacts. The major hurdle lies in acquiring these images in such a manner that extraneous variables, causing distortions in the form of noise and artifacts, are kept to a bare minimum. The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality, while indirectly attacking the effectiveness of the diagnostic process. It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise. The solution to these challenges… More >

Displaying 1-10 on page 1 of 141. Per Page