Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    SEIHCRD Model for COVID-19 Spread Scenarios, Disease Predictions and Estimates the Basic Reproduction Number, Case Fatality Rate, Hospital, and ICU Beds Requirement

    Avaneesh Singh*, Manish Kumar Bajpai

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 991-1031, 2020, DOI:10.32604/cmes.2020.012503 - 15 December 2020

    Abstract We have proposed a new mathematical method, the SEIHCRD model, which has an excellent potential to predict the incidence of COVID-19 diseases. Our proposed SEIHCRD model is an extension of the SEIR model. Three-compartments have added death, hospitalized, and critical, which improves the basic understanding of disease spread and results. We have studied COVID-19 cases of six countries, where the impact of this disease in the highest are Brazil, India, Italy, Spain, the United Kingdom, and the United States. After estimating model parameters based on available clinical data, the model will propagate and forecast dynamic… More >

  • Open Access

    ARTICLE

    Study of Non-Pharmacological Interventions on COVID-19 Spread

    Avaneesh Singh*, Saroj Kumar Chandra, Manish Kumar Bajpai

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 967-990, 2020, DOI:10.32604/cmes.2020.011601 - 15 December 2020

    Abstract COVID-19 disease has emerged as one of the life threatening threat to the society. A novel beta coronavirus causes it. It began as unidentified pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. No vaccine has been produced till now. Mathematical models are used to study the impact of different measures used to decrease pandemic. Mathematical models have been designed to estimate the numbers of spreaders in different scenarios in the present manuscript. In the present manuscript, three different mathematical models have been proposed with different scenarios, such as More >

  • Open Access

    ARTICLE

    Second Law Analysis and Optimization of Elliptical Pin Fin Heat Sinks Using Firefly Algorithm

    Nawaf N. Hamadneh1, Waqar A. Khan2, Ilyas Khan3, *

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1015-1032, 2020, DOI:10.32604/cmc.2020.011476 - 20 August 2020

    Abstract One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size. These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate. They are designed to optimize overall performance. Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power. In this study, the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins. The pin-fins are arranged in an inline fashion. The natureinspired metaheuristic algorithm performs powerfully and efficiently in solving numerical… More >

  • Open Access

    ARTICLE

    Single Parameter Sensitivity Analysis of Ply Parameters on Structural Performance of Wind Turbine Blade

    Lanting Zhang, Laifu Guo, Qiang Rong*

    Energy Engineering, Vol.117, No.4, pp. 195-207, 2020, DOI:10.32604/EE.2020.010617 - 31 July 2020

    Abstract The various ply parameters of composite wind turbine blade have crucial influence, of respectively varying degree, on the static strength and stiffness of the blade, elements closely related to its performance. In this article, the method of the single-parameter sensitivity analysis is presented. A 1.5 MW wind turbine blade is considered as the study object, where the load of the blade is calculated and the respective finite element model is established. According to engineering practice, the investigation range of ply parameters is determined, and the test design scheme of ply parameter for the blade is… More >

  • Open Access

    ARTICLE

    Dynamical Behavior and Sensitivity Analysis of a Delayed Coronavirus Epidemic Model

    Muhammad Naveed1, *, Dumitru Baleanu2, 3, 4, Muhammad Rafiq5, Ali Raza6, Atif Hassan Soori1, Nauman Ahmed7

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 225-241, 2020, DOI:10.32604/cmc.2020.011534 - 23 July 2020

    Abstract Mathematical delay modelling has a significant role in the different disciplines such as behavioural, social, physical, biological engineering, and bio-mathematical sciences. The present work describes mathematical formulation for the transmission mechanism of a novel coronavirus (COVID-19). Due to the unavailability of vaccines for the coronavirus worldwide, delay factors such as social distance, quarantine, travel restrictions, extended holidays, hospitalization, and isolation have contributed to controlling the coronavirus epidemic. We have analysed the reproduction number and its sensitivity to parameters. If, More >

  • Open Access

    ARTICLE

    Study on the Economic Insulation Thickness of the Buried Hot Oil Pipelines Based on Environment Factors

    Shihao Fan, Mingliang Chang*, Shouxi Wang, Qing Quan, Yong Wang, Dan Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 45-59, 2020, DOI:10.32604/cmes.2020.08973 - 19 June 2020

    Abstract It is important to determine the insulation thickness in the design of the buried hot oil pipelines. The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits. However, as a significant evaluation, the environmental factors haven’t been considered in the previous study. Considering this factor, the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper, which is solved by the golden section method while considering the costs of investment, operation, environment, the time value… More >

  • Open Access

    ARTICLE

    Modeling Tracer Flow Characteristics in Different Types of Pores: Visualization and Mathematical Modeling

    Tongjing Liu1, 2, *, Weixia Liu3, Pengxiang Diwu4, Gaixing Hu5, 6, Ting Xu1, 7, Yuqi Li2, Zhenjiang You8, Runwei Qiao2, Jia Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1205-1222, 2020, DOI:10.32604/cmes.2020.08961 - 28 May 2020

    Abstract Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow. To clarify the effect of micro heterogeneity on aqueous tracer transport, this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport. The visualization results show a faster tracer movement into movable water than it into bound water, and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity. Moreover, the proposed mathematical model includes the effects of bound water and… More >

  • Open Access

    ARTICLE

    STUDY ON WAX DEPOSITION RATE OPTIMIZATION ALGORITHM BASED ON LEVENBERG-MARQUARDT ALGORITHM AND GLOBAL OPTIMIZATION

    Rongge Xiaoa , Yue Zhub,*, Wenbo Jina , Zheng Daia , Shifang Lia , Fan Zhangc

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.28

    Abstract In order to accurately obtain the wax deposition rate model, according to the kinetic principle of wax deposition, several factors affecting the wax deposition rate were selected, and by a optimization software of First Optimization(1stOpt), The parameters of two typical wax deposition rate models are solved respectively based on optimization algorithm combined by Levenberg-Marquardt (L-M) algorithm and global optimization and the calculated data were compared. The results show that: compared with the model parameters obtained by least squares method, the model parameters obtained by this optimization algorithm can describe the variation of wax deposition rate… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION AND MATHEMATICAL MODELING OF CONVECTIVE DRYING KINETICS OF WHITE RADISH

    Abhishek Dasorea,*, Ramakrishna Konijetib , Naveen Puppalac

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.21

    Abstract The influence of air temperature on drying kinetics of radish slices in a bench scale convective tray dryer was examined experimentally and suitable drying model was developed. The experiments of drying of radish slices were conducted at 40, 50 and 60 °C with an air velocity of 2 More >

  • Open Access

    ARTICLE

    Research on Measuring Method of Crankshaft Based on Servo Control Mode

    Liu Yangpeng1, Ding Jianjun1, Cao Jingshu2, Wang Zhen1, Jiang Zhuangde1

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 767-774, 2019, DOI:10.31209/2019.100000080

    Abstract In the conventional measure process of crankshaft, the width of Abbe probe is designed as more than double the eccentricity volume of crank. This even causes the decline of test accuracy due to the probe distortion. This paper proposes a type of servo control mode for measuring crankshaft based on the four-axis motion system. Abbe probe is integrated with Axis motion system. It feeds in a servo way. A mathematical model is developed to ensure the stable contact between probe and workpiece during moving. The results show that, the narrowed Abbe probe will move according More >

Displaying 61-70 on page 7 of 93. Per Page