Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Mathematical Model for Skeletal Muscle to Simulate the Concentric and Eccentric Contraction

    Chetan Kuthe, R. V. Uddanwadiker, P. M. Padole, A. A. Ramteke§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 1-16, 2015, DOI:10.3970/mcb.2015.012.001

    Abstract Skeletal muscles are responsible for the relative motion of the bones at the joints and provide the required strength. They exhibit highly nonlinear mechanical behaviour and are described by nonlinear hyperelastic constitutive relations. It is distinct from other biological soft tissue. Its hyperelastic or viscoelastic behaviour is modelled by using CE, SEE, and PEE. Contractile element simulates the behaviour of skeletal muscle when it is subjected to eccentric and concentric contraction. This research aims to estimate the stress induced in skeletal muscle in eccentric and concentric contraction with respect to the predefined strain. With the… More >

  • Open Access

    ARTICLE

    The Accuracy of Mathematical Models in Simulator Distributed Computing

    I. Kvasnica1, P. Kvasnica2

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.6, pp. 447-462, 2015, DOI:10.3970/cmes.2015.107.447

    Abstract The issue of simulation of decentralized mathematical models is discussed in the paper. The authors’ knowledge is based on a theory of design of decentralized computer control systems. Their knowledge is gained in the process of designing mathematical models that are simulated. A decomposed control system is required to meet the conditions of observation and control. The methodology of a multi-model design is based on main principles of object orientation such as abstraction, hierarchy, and modularity. Modelling on a parallel architecture has an impact on a simulator system. The system is defined by the equations More >

  • Open Access

    ARTICLE

    EX VIVO LIVER TISSUE RADIOFREQUENCY THERMAL ABLATION: IR MEASUREMENTS AND SIMULATIONS

    Edoardo Gino Macchi* , Giovanni Braschi, Mario Gallati

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.20

    Abstract Radiofrequency thermal ablation (RFTA) is a medical procedure currently widely adopted for liver tumors treatment. Its outcome is strongly influenced by temperature distribution near the RF applicator therefore continuous measurements are required both to validate RFTA numerical models and to better control the outcome of the procedure. The space-time evolution of the thermal field during RFTA on ex vivo porcine liver tissue has been measured by infrared thermal imaging in different experimental setups. A three-dimensional simulation of the whole experiment reproduces all the features of the thermal field measurements and validates the proposed measurement methodology. More >

  • Open Access

    ARTICLE

    Bone Tissue Formation under Ideal Conditions in a Scaffold Generated by a Reaction-Diffusion System

    Marco A.Velasco, Diego A. Garzón-Alvarado

    Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 137-157, 2013, DOI:10.3970/mcb.2013.010.137

    Abstract The design of porous scaffolds for tissue engineering requires methods to generate geometries in order to control the stiffness and the permeability of the implant among others characteristics. This article studied the potential of the reaction-diffusion systems to design porous scaffolds for bone regeneration. We simulate the degradation of the scaffold material and the formation of new bone tissue over canal-like, spherical and ellipsoid structures obtained by this approach. The simulations show that the degradation and growth rates are affected by the form of porous structures. The results have indicated that the proposed method has More >

  • Open Access

    ARTICLE

    A New Mathematical Modeling of Maxwell Equations: Complex Linear Operator and Complex Field

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.1, pp. 25-38, 2008, DOI:10.3970/cmes.2008.038.025

    Abstract In this paper a complex matrix operator and a complex field are used to express the Maxwell equations, of which the complex field embraces all field variables and the matrix operator embraces the time and space differential operators. By left applying the operator on the complex field one can get all the four Maxwell equations, which are usually expressed by the vector form. The new formulation matches the Lorenz gauge condition, and its mathematical advantage is that it can incorporate the Maxwell equations into a single equation. The introduction of four-potential is possible only under the More >

  • Open Access

    ARTICLE

    Optimization of Industrial Fluid Catalytic Cracking Unit having Five Lump Kinetic Scheme using Genetic Algorithm

    Shishir Sinha1, Praveen Ch.

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.2, pp. 85-102, 2008, DOI:10.3970/cmes.2008.032.085

    Abstract Fluid catalytic cracking (FCC) unit plays most important role in the economy of a modern refinery that it is use for value addition to the refinery products. Because of the importance of FCC unit in refining, considerable effort has been done on the modeling of this unit for better understanding and improved productivity. The process is characterized by complex interactions among feed quality, catalyst properties, unit hardware parameters and process conditions. \newline The traditional and global approach of cracking kinetics is lumping. In the present paper, five lump kinetic scheme is considered, where gas oil… More >

  • Open Access

    ARTICLE

    Sensitivity of the Acoustic Scattering Problem in Prolate Spheroidal Geometry with Respect to Wavenumber and Shape

    D. Kourounis1, L.N. Gergidis1, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.028.185

    Abstract The sensitivity of analytical solutions of the direct acoustic scattering problem in prolate spheroidal geometry on the wavenumber and shape, is extensively investigated in this work. Using the well known Vekua transformation and the complete set of radiating "outwards'' eigensolutions of the Helmholtz equation, introduced in our previous work ([Charalambopoulos and Dassios(2002)], [Gergidis, Kourounis, Mavratzas, and Charalambopoulos (2007)]), the scattered field is expanded in terms of it, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. An approach is employed for the determination of the expansion coefficients, which is optimal in… More >

  • Open Access

    ARTICLE

    Acoustic Scattering in Prolate Spheroidal Geometry via Vekua Tranformation -- Theory and Numerical Results

    L.N. Gergidis, D. Kourounis, S. Mavratzas, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 157-176, 2007, DOI:10.3970/cmes.2007.021.157

    Abstract A new complete set of scattering eigensolutions of Helmholtz equation in spheroidal geometry is constructed in this paper. It is based on the extension to exterior boundary value problems of the well known Vekua transformation pair, which connects the kernels of Laplace and Helmholtz operators. The derivation of this set is purely analytic. It avoids the implication of the spheroidal wave functions along with their accompanying numerical deficiencies. Using this novel set of eigensolutions, we solve the acoustic scattering problem from a soft acoustic spheroidal scatterer, by expanding the scattered field in terms of it. More >

  • Open Access

    ARTICLE

    Oxygen Transport in Tissue Engineering Systems: Cartilage and Myocardium

    B. Obradovic1, M. Radisic2, G. Vunjak-Novakovic3

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 189-202, 2007, DOI:10.3970/fdmp.2007.003.189

    Abstract Efficient transport of oxygen is one of the main requirements in tissue engineering systems in order to avoid cell death in the inner tissue regions and support uniform tissue regeneration. In this paper, we review approaches to design of tissue engineering systems with adequate oxygen delivery for cultivation of cartilage and myocardium, two distinctly different tissue types with respect to the tissue structure and oxygen requirements. Mathematical modeling was used to support experimental results and predict oxygen transport within the cultivated tissues and correlate it to the cell response and tissue properties. More >

  • Open Access

    ARTICLE

    Water quality in the basin of the Amajac river, Hidalgo, Mexico: Diagnosis and prediction

    Amado Alvarez1,2, Enrique Rubiños Panta1, Francisco Gavi Reyes1, Juan José Alarcón Cabañero2, Elizabeth Hernández Acosta3, Carlos Ramírez Ayala1, Enrique Mejía Saenz1, Francisco Pedrero Salcedo2, Emilio Nicolas Nicolas2, Enrique Salazar Sosa4

    Phyton-International Journal of Experimental Botany, Vol.75, pp. 71-83, 2006, DOI:10.32604/phyton.2006.75.071

    Abstract A water quality index as a standardized method to compare the category in an integral way, between locations and through time, of the different water, river and stream storages of the Amajac river basin was developed. In addition, it is possible to predict the degree of contamination and establish planning strategies in the management of the water resources for the river basin in issue. The used methodology was based in the quantitative expression of water quality. Three samplings were made (2005-2006) and Dissolved Oxygen, Coliform in feaces, pH, Oxygen Biochemical Demand, Nitrates, Total Phosphorus, Turbidity… More >

Displaying 81-90 on page 9 of 93. Per Page