Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (306)
  • Open Access

    ARTICLE

    Inhibition of proliferation, migration, and invasiveness of bladder cancer cells through SAPCD2 knockdown

    CHONG SHEN, JIAJUN YAN*, YU REN, ZHIRONG ZHU, XIAOLONG ZHANG, SHUIXIANG TAO

    BIOCELL, Vol.48, No.1, pp. 97-109, 2024, DOI:10.32604/biocell.2023.045303 - 30 January 2024

    Abstract Introduction: Bladder cancer (BC) has a high incidence and mortality rate worldwide. Suppressor anaphase-promoting complex domain containing 2 (SAPCDC2) is over-expressed in a variety of tumors. Objectives: This study investigated the effects of SAPCD2 knockdown on BC cells. Methods: T24 and UMUC3 cell models and the xenografted BC tumor model with SAPCD2 knockdown were established to observe the malignant phenotype of BC cells by cell counting kit-8 assay, colony formation test, wound healing, and Transwell assay, mRNA and proteins expressions were measured with quantitative real-time polymerase chain reaction, western blotting, and tissue immunohistochemistry. Lithium chloride agonist… More > Graphic Abstract

    Inhibition of proliferation, migration, and invasiveness of bladder cancer cells through SAPCD2 knockdown

  • Open Access

    ARTICLE

    GIPC1 promotes tumor growth and migration in gastric cancer via activating PDGFR/PI3K/AKT signaling

    TINGTING LI1, WEI ZHONG1, LIU YANG1, ZHIYU ZHAO1, LI WANG1, CONG LIU1, WANYUN LI1, HAIYAN LV2, SHENGYU WANG1, JIANGHUA YAN1, TING WU1,*, GANG SONG1,*, FANGHONG LUO1,*

    Oncology Research, Vol.32, No.2, pp. 361-371, 2024, DOI:10.32604/or.2023.043807 - 28 December 2023

    Abstract The high mortality rate associated with gastric cancer (GC) has resulted in an urgent need to identify novel therapeutic targets for GC. This study aimed to investigate whether GAIP interacting protein, C terminus 1 (GIPC1) represents a therapeutic target and its regulating mechanism in GC. GIPC1 expression was elevated in GC tissues, liver metastasis tissues, and lymph node metastases. GIPC1 knockdown or GIPC1 blocking peptide blocked the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway, and inhibited the proliferation and migration of GC cells. Conversely, GIPC1 overexpression markedly activated the PDGFR/PI3K/AKT signaling pathway, and promoted GC More > Graphic Abstract

    GIPC1 promotes tumor growth and migration in gastric cancer via activating PDGFR/PI3K/AKT signaling

  • Open Access

    ARTICLE

    Absent in melanoma 2 attenuates proliferation and migration and promotes apoptosis of human colorectal cancer cells by activating P38MAPK signaling pathway

    ZHI ZHANG1,#, XIAOSONG LI1,2,#, YING ZHANG1,2,#, HAO ZHU1,2, ZHENGUO QIAO3, YANG LU4, XIUWEI MI4, HUIHUA CAO5, GENHAI SHEN1,*, SONGBING HE4,*

    Oncology Research, Vol.32, No.2, pp. 353-360, 2024, DOI:10.32604/or.2023.042986 - 28 December 2023

    Abstract Colorectal cancer (CRC) stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally. Absent in melanoma 2 (AIM2), a constituent of the interferon-inducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family, contributes to both cancer progression and inflammasome activation. Despite this understanding, the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive. Consequently, this study endeavors to assess AIM2’s expression levels, explore its potential antitumor effects, elucidate associated cancer-related processes, and decipher the underlying signaling pathways in CRC. More > Graphic Abstract

    Absent in melanoma 2 attenuates proliferation and migration and promotes apoptosis of human colorectal cancer cells by activating P38MAPK signaling pathway

  • Open Access

    ARTICLE

    TonEBP expression is essential in the IL-1β–induced migration and invasion of human A549 lung cancer cells

    HEE JU SONG, TAEHEE KIM, HAN NA CHOI, SOO JIN KIM, SANG DO LEE*

    Oncology Research, Vol.32, No.1, pp. 151-161, 2024, DOI:10.32604/or.2023.030690 - 15 November 2023

    Abstract Lung cancer has the highest mortality rate among all cancers, in part because it readily metastasizes. The tumor microenvironment, comprising blood vessels, fibroblasts, immune cells, and macrophages [including tumor-associated macrophages (TAMs)], is closely related to cancer cell growth, migration, and invasion. TAMs secrete several cytokines, including interleukin (IL)-1β, which participate in cancer migration and invasion. p21-activated kinase 1 (PAK1), an important signaling molecule, induces cell migration and invasion in several carcinomas. Tonicity-responsive enhancer-binding protein (TonEBP) is also known to participate in cancer cell growth, migration, and invasion. However, the mechanisms by which it increases lung… More > Graphic Abstract

    TonEBP expression is essential in the IL-1β–induced migration and invasion of human A549 lung cancer cells

  • Open Access

    ARTICLE

    LIM1863 is useful to explore collective cancer cell migration, and the group of heterogeneous cells undergoing collective migration behaves like a supracellular unit

    JINSONG WU1,2, ZHENG ZHI1, WENZHONG XU1, DIANCGENG LI1, QIUBO LI1, YAN HAN1, JIANMING HE1,3,*, XI LIANG1,*

    BIOCELL, Vol.47, No.12, pp. 2671-2680, 2023, DOI:10.32604/biocell.2023.043494 - 27 December 2023

    Abstract Introduction: Collective cancer cell migration (CCCM) and epithelial-to-mesenchymal transition (EMT) play key roles in metastasis. This study reports that the colorectal carcinoma cell line LIM1863 is useful for the study of CCCM and EMT. Methods: Hematoxylin and eosin staining, scanning electron microscopy, transmission electron microscopy, and western blot analysis were performed. Results: LIM1863 automatically grew as spheroids in suspension and had important typical epithelial properties, including several layers of cells arranged around a central lumen, apical-basal polarity, and types of cell-cell junctions. Treatment with a combination of both TGF beta 1 and TNF alpha induced definite and… More >

  • Open Access

    ARTICLE

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.11, pp. 2321-2334, 2023, DOI:10.32604/biocell.2023.043796 - 27 November 2023

    Abstract The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies (like epithelial cancer). The altered rearrangement of epithelial cells has an impact on the development of cancer. Therefore, it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer. While the biological mechanisms include cell signaling and gene expression, the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension, epithelial surface tension, and compressive stress accumulated within the epithelium. Although the segregation of… More > Graphic Abstract

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

  • Open Access

    ARTICLE

    Long non-coding RNA-ATB induces trastuzumab resistance and aggravates the progression of gastric cancer by repressing miR- 200c via ZNF217 elevation

    JIAZHUANG LI*, WEI ZHANG, SHOUBAO GAO, LI SUN, QINGYANG TAI, YING LIU

    BIOCELL, Vol.47, No.10, pp. 2313-2320, 2023, DOI:10.32604/biocell.2023.029860 - 08 November 2023

    Abstract Background: Trastuzumab resistance accounts for chemotherapy failure in gastric cancer patients in clinical practice. The significance of long non-coding RNAs (lncRNAs) in the maintenance of drug resistance in gastric cancer has been already underlined. Method: This study aimed to identify the specific role of lncRNA-ATB in gastric cancer progression and trastuzumab resistance. The downstream miRs of lncRNA-ATB and target genes of miRs were predicted by bioinformatics analysis and verified using dual luciferase reporter assay. Loss- and gain-function assays were performed to explore the roles of lncRNA-ATB, miR-200c, and zinc-finger protein 217 (ZNF217) in the cell functions More >

  • Open Access

    ARTICLE

    A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network

    Ali Ahmadi Shahrakht1, Parisa Hajirahimi2, Omid Rostami3, Diego Martín4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3059-3081, 2023, DOI:10.32604/iasc.2023.040502 - 11 September 2023

    Abstract As the internet of things (IoT) continues to expand rapidly, the significance of its security concerns has grown in recent years. To address these concerns, physical unclonable functions (PUFs) have emerged as valuable tools for enhancing IoT security. PUFs leverage the inherent randomness found in the embedded hardware of IoT devices. However, it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches. In this paper, a new deep learning (DL)-based modeling attack is introduced to break the resistance of complex XAPUFs. Because training DL models is a problem that falls… More >

  • Open Access

    PROCEEDINGS

    Atomistic Simulations on the Shock Response of Nanoscale He Bubble in Metal

    Jianli Shao1,2,*, Weidong Wei1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09101

    Abstract This report mainly introduces our recent research on the shock-induced collapse, migration and coalescence of He bubbles in metal based on atomistic simulations. The He bubble will be compressed to permanent deformation with the finite plastic collapse of metal. Under strong shock, the He bubble can be breakdown by the nano-jet of the metal, but it returns to a reduced sphere in the molten metal after long-time evolution, driven by the He-Al interface energy. Besides, the shock-induced migration of He bubble is revealed, which can be divided into shock acceleration and the following inertial motion. More >

  • Open Access

    PROCEEDINGS

    Atomistic Migration Mechanisms of [1210] Symmetric Tilt Grain Boundaries in Magnesium

    Chuanlong Xu1, Haidong Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010110

    Abstract Grain boundary (GB) is an important microstructure and plays a vital role in the mechanical properties of polycrystalline materials by GB migration and sliding. In this work, molecular dynamic (MD) simulations were performed to investigate the migration mechanisms of symmetric tilt grain boundaries (STGBs) in magnesium. A total of 15 STGBs with the rotation angle θ from 0° to 90° were studied under a pure shear loading. The results show that the GB migration mechanisms are significantly influenced by the GB structure. For small angle STGBs (θ<28°), the GB migration is mediated … More >

Displaying 71-80 on page 8 of 306. Per Page