Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    AquaTree: Deep Reinforcement Learning-Driven Monte Carlo Tree Search for Underwater Image Enhancement

    Chao Li1,3,#, Jianing Wang1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071242 - 12 January 2026

    Abstract Underwater images frequently suffer from chromatic distortion, blurred details, and low contrast, posing significant challenges for enhancement. This paper introduces AquaTree, a novel underwater image enhancement (UIE) method that reformulates the task as a Markov Decision Process (MDP) through the integration of Monte Carlo Tree Search (MCTS) and deep reinforcement learning (DRL). The framework employs an action space of 25 enhancement operators, strategically grouped for basic attribute adjustment, color component balance, correction, and deblurring. Exploration within MCTS is guided by a dual-branch convolutional network, enabling intelligent sequential operator selection. Our core contributions include: (1) a More >

  • Open Access

    ARTICLE

    Comparison of Objective Forecasting Method Fit with Electrical Consumption Characteristics in Timor-Leste

    Ricardo Dominico Da Silva1,2, Jangkung Raharjo1,3,*, Sudarmono Sasmono1,3

    Energy Engineering, Vol.122, No.12, pp. 5073-5090, 2025, DOI:10.32604/ee.2025.071545 - 27 November 2025

    Abstract The rapid development of technology has led to an ever-increasing demand for electrical energy. In the context of Timor-Leste, which still relies on fossil energy sources with high operational costs and significant environmental impacts, electricity load forecasting is a strategic measure to support the energy transition towards the Net Zero Emission (NZE) target by 2050. This study aims to utilize historical electricity load data for the period 2013–2024, as well as data on external factors affecting electricity consumption, to forecast electricity load in Timor-Leste in the next 10 years (2025–2035). The forecasting results are expected… More >

  • Open Access

    PROCEEDINGS

    Internal Connection Between the Microstructures and the Mechanical Properties in Additive Manufacturing

    Yifei Wang, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011121

    Abstract Additive manufacturing (AM) reveals high anisotropy in mechanical properties due to the thermal accumulation induced microstructures. How to reveal the internal connection between the microstructures and the mechanical properties in additive manufacturing is a challenge. There are many methods to predict the mechanical properties based on the microstructural evolutions in additive manufacturing [1–3]. Here we summarized the main methods for the prediction of the mechanical properties in additive manufacturing, including crystal plasticity finite element method (CPFEM), dislocation dynamics (DD), and molecular dynamics (MD). We systematically examine these primary approaches for mechanical property predictions in AM,… More >

  • Open Access

    ARTICLE

    Subdivision-Based Isogeometric BEM with Deep Neural Network Acceleration for Acoustic Uncertainty Quantification under Ground Reflection Effects

    Yingying Guo1, Ziyu Cui2, Jibing Shen1, Pei Li3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4519-4550, 2025, DOI:10.32604/cmc.2025.071504 - 23 October 2025

    Abstract Accurate simulation of acoustic wave propagation in complex structures is of great importance in engineering design, noise control, and related research areas. Although traditional numerical simulation methods can provide precise results, they often face high computational costs when applied to complex models or problems involving parameter uncertainties, particularly in the presence of multiple coupled parameters or intricate geometries. To address these challenges, this study proposes an efficient algorithm for simulating the acoustic field of structures with adhered sound-absorbing materials while accounting for ground reflection effects. The proposed method integrates Catmull-Clark subdivision surfaces with the boundary… More >

  • Open Access

    ARTICLE

    Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology

    Miguel A. Millán1,*, Rubén A. Galindo2, Fausto Molina-Gómez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2923-2941, 2025, DOI:10.32604/cmes.2025.069356 - 30 September 2025

    Abstract Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes, resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns. This complexity poses significant challenges for slope stability analysis, requiring the development of specialized techniques to address these issues. This research presents a numerical methodology that incorporates spatial variability, nonlinear material characterization, and probabilistic analysis using a Monte Carlo framework to address this issue. The heterogeneous structure is represented by randomly assigning different lithotypes across the slope, while maintaining predefined global proportions. This contrasts with the more common approach… More >

  • Open Access

    ARTICLE

    Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na1/2Bi1/2TiO3-Based Ceramic Capacitors

    Shige Wang1, Yalong Liang2, Lian Huang3, Pei Li4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2729-2748, 2025, DOI:10.32604/cmc.2025.068351 - 23 September 2025

    Abstract This study introduces a hybrid Cuckoo Search-Deep Neural Network (CS-DNN) model for uncertainty quantification and composition optimization of Na1/2Bi1/2TiO3 (NBT)-based dielectric energy storage ceramics. Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate (1 − x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD, SEM, and electrical characterization. The key innovation lies in integrating the CS metaheuristic algorithm with a DNN, overcoming local minima in training and establishing a robust composition-property prediction framework. Our model accurately… More >

  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    PROCEEDINGS

    The Simulation of Microstructures and Mechanical Properties in Wire Arc Additive Manufacturing

    Zhao Zhang1,*, Xiang Gao1, Yifei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012115

    Abstract Wire arc additive manufacturing (WAAM) reveals its high efficiency for the fabrications in comparison with laser additive manufacturing. To reveal the relationship between arc settings and the microstructural evolutions, phase field model and Monte Carlo model are established for the simulation of the microstructural evolutions and dislocation dynamics model is established for the simulation of the anisotropic properties in WAAM. Numerical results are compared with Experiments to validate the proposed models. The length/width ratio of the formed grains in solidification becomes smaller when the scanning speed is decreased or the input powder is increased. The… More >

  • Open Access

    ARTICLE

    Study and modeling of a CdS /PbS betavoltaic cell by Monte Carlo simulation

    H. Moughlia,*, B. Azeddinea, Z. Tioutia, M. Rajczykb

    Chalcogenide Letters, Vol.20, No.3, pp. 227-233, 2023, DOI:10.15251/CL.2023.203.227

    Abstract In this paper, we present simulations of the concentration of electron-hole pairs generated from each point in solid targets under Ni-63 source bombardment of a CdS/PbS-based betavoltaic cell. This model is an accurate representation of the electronic interaction has been reported. We can obtain the distribution of the electron-hole pairs generated in the CdS/PbS junction as a function of the depth by Monte Carlo simulation, this distribution allowed us to find the concentrations of excess minority carriers as a function of the thickness, which can be function and injection into the continuity equations to determine More >

  • Open Access

    ARTICLE

    Modelling and simulation of PN junction CdS/CdTe for betavoltaic cell

    A. Talhia,*, B. Azeddineb,c, Z. Tioutic, M. Rajczykd

    Chalcogenide Letters, Vol.20, No.4, pp. 243-249, 2023, DOI:10.15251/CL.2023.204.243

    Abstract The method for producing power by integrating a beta source to semiconductors junction’s devices is called as betavoltaic energy conversion. [1]. In this study by using Monte Carlo (MC) method to simulate the distribution of electron- hole pairs (EHP) generated at each point in the cell under bombardment of 63 Ni source for betavoltaic cell then the result of that Monte Carlo simulation will be used in the modelling and simulation of a betavoltaic cell CdS/CdTe heterojunction and their characteristics. More >

Displaying 1-10 on page 1 of 64. Per Page