Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,844)
  • Open Access

    ARTICLE

    A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing

    Yong Ma1, Han Zhao2, Kunyin Guo3,*, Yunni Xia3,*, Xu Wang4, Xianhua Niu5, Dongge Zhu6, Yumin Dong7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 907-927, 2024, DOI:10.32604/cmes.2024.048759

    Abstract Mobile Edge Computing (MEC) is a technology designed for the on-demand provisioning of computing and storage services, strategically positioned close to users. In the MEC environment, frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery, ultimately enhancing the quality of the user experience. However, due to the typical placement of edge devices and nodes at the network’s periphery, these components may face various potential fault tolerance challenges, including network instability, device failures, and resource constraints. Considering the dynamic nature of MEC, making high-quality content caching decisions for real-time mobile applications, especially… More >

  • Open Access

    ARTICLE

    A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information

    Hao Jiang1, Yuerong Liao1, Dongdong Zhao2, Wenjian Luo3, Xingyi Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1045-1075, 2024, DOI:10.32604/cmes.2024.048653

    Abstract Due to the presence of a large amount of personal sensitive information in social networks, privacy preservation issues in social networks have attracted the attention of many scholars. Inspired by the self-nonself discrimination paradigm in the biological immune system, the negative representation of information indicates features such as simplicity and efficiency, which is very suitable for preserving social network privacy. Therefore, we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks, called AttNetNRI. Specifically, a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the… More >

  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations… More >

  • Open Access

    ARTICLE

    DCFNet: An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation

    Chengzhang Zhu1,2, Renmao Zhang1, Yalong Xiao1,2,*, Beiji Zou1, Xian Chai1, Zhangzheng Yang1, Rong Hu3, Xuanchu Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1103-1128, 2024, DOI:10.32604/cmes.2024.048453

    Abstract Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis. Notably, most existing methods that combine the strengths of convolutional neural networks (CNNs) and Transformers have made significant progress. However, there are some limitations in the current integration of CNN and Transformer technology in two key aspects. Firstly, most methods either overlook or fail to fully incorporate the complementary nature between local and global features. Secondly, the significance of integrating the multi-scale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer. To address… More >

  • Open Access

    ARTICLE

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

    Zhong Qu1,*, Guoqing Mu1, Bin Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 255-273, 2024, DOI:10.32604/cmes.2024.048175

    Abstract Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with convolutional neural networks (CNN) playing an important role in this field. However, as the performance of crack detection in cement pavement improves, the depth and width of the network structure are significantly increased, which necessitates more computing power and storage space. This limitation hampers the practical implementation of crack detection models on various platforms, particularly portable devices like small mobile devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules… More > Graphic Abstract

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

  • Open Access

    ARTICLE

    Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks

    Haosong Gou1, Gaoyi Zhang1, Renê Ripardo Calixto2, Senthil Kumar Jagatheesaperumal3, Victor Hugo C. de Albuquerque2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1077-1102, 2024, DOI:10.32604/cmes.2024.047806

    Abstract Large-scale wireless sensor networks (WSNs) play a critical role in monitoring dangerous scenarios and responding to medical emergencies. However, the inherent instability and error-prone nature of wireless links present significant challenges, necessitating efficient data collection and reliable transmission services. This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs. The primary goal is to enhance the reliability of data collection and transmission services, ensuring a comprehensive and practical approach. Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability. Additionally,… More >

  • Open Access

    ARTICLE

    Deep Learning Social Network Access Control Model Based on User Preferences

    Fangfang Shan1,2,*, Fuyang Li1, Zhenyu Wang1, Peiyu Ji1, Mengyi Wang1, Huifang Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1029-1044, 2024, DOI:10.32604/cmes.2024.047665

    Abstract A deep learning access control model based on user preferences is proposed to address the issue of personal privacy leakage in social networks. Firstly, social users and social data entities are extracted from the social network and used to construct homogeneous and heterogeneous graphs. Secondly, a graph neural network model is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network. Then, high-order neighbor nodes, hidden neighbor nodes, displayed neighbor nodes, and social data nodes are used to update user nodes… More >

  • Open Access

    REVIEW

    A Survey on Chinese Sign Language Recognition: From Traditional Methods to Artificial Intelligence

    Xianwei Jiang1, Yanqiong Zhang1,*, Juan Lei1, Yudong Zhang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1-40, 2024, DOI:10.32604/cmes.2024.047649

    Abstract Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines (SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies among traditional identification methods. Benefiting from the rapid development of computer vision and artificial intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet) and various deep neural networks have sprung up. Deep Neural Networks (DNNs) and their derived… More >

  • Open Access

    ARTICLE

    Identifying Brand Consistency by Product Differentiation Using CNN

    Hung-Hsiang Wang1, Chih-Ping Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 685-709, 2024, DOI:10.32604/cmes.2024.047630

    Abstract This paper presents a new method of using a convolutional neural network (CNN) in machine learning to identify brand consistency by product appearance variation. In Experiment 1, we collected fifty mouse devices from the past thirty-five years from a renowned company to build a dataset consisting of product pictures with pre-defined design features of their appearance and functions. Results show that it is a challenge to distinguish periods for the subtle evolution of the mouse devices with such traditional methods as time series analysis and principal component analysis (PCA). In Experiment 2, we applied deep learning to predict the extent… More >

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

    Chengkan Xu1,2,4, Xiaofei Wang3, Yixuan Li2, Guannan Wang2,*, He Zhang2,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 957-974, 2024, DOI:10.32604/cmes.2024.047327

    Abstract Structural damage in heterogeneous materials typically originates from microstructures where stress concentration occurs. Therefore, evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial. Repeating unit cells (RUCs) are commonly used to represent microstructural details and homogenize the effective response of composites. This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs. The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters, including volume fraction, fiber/matrix property ratio, fiber shapes, and loading direction. Subsequently, the conditional generative adversarial network… More > Graphic Abstract

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

Displaying 61-70 on page 7 of 2844. Per Page