Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Optimal Dynamic Voltage Restorer Using Water Cycle Optimization Algorithm

    Taweesak Thongsan, Theerayuth Chatchanayuenyong*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 595-623, 2023, DOI:10.32604/csse.2023.027966

    Abstract This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer (DVR) in a three-phase system. The control scheme employs the fractional order, proportional-integral-derivative (FOPID) controller to improve on the DVR performance in order to enhance the power quality in terms of the response time, steady-state error and total harmonic distortion (THD). The result obtained was compared with fractional order, proportional-integral (FOPI), proportional-integral-derivative (PID) and proportional-integral (PI) controllers in order to show the effectiveness of the proposed DVR control scheme. A water cycle optimization algorithm (WCA) was utilized to find the optimal set for all… More >

  • Open Access

    ARTICLE

    Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer

    Ahmed M. Agwa1, Mohamed Abdeen2, Shaaban M. Shaaban1,3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5525-5541, 2022, DOI:10.32604/cmc.2022.031580

    Abstract In this study, a bald eagle optimizer (BEO) is used to get optimal parameters of the fractional-order proportional–integral–derivative (FOPID) controller for load frequency control (LFC). Since BEO takes only a very short time in finding the optimal solution, it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads. Simulations and demonstrations are carried out using MATLAB-R2020b. The performance of the BEO-FOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies. The robustness of the BEO-FOPID… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Based PID Controller Design for Unstable System

    Saranya Rajeshwaran1,*, C. Agees Kumar2, Kanthaswamy Ganapathy3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1611-1625, 2023, DOI:10.32604/iasc.2023.029299

    Abstract PID controllers play an important function in determining tuning parameters in any process sector to deliver optimal and resilient performance for nonlinear, stable and unstable processes. The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller. The Direct Multi Search (DMS) algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model. A Metaheuristics Algorithm such as, SA (Simulated Annealing), MBBO (Modified… More >

  • Open Access

    ARTICLE

    Vision Navigation Based PID Control for Line Tracking Robot

    Rihem Farkh*, Khaled Aljaloud

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 901-911, 2023, DOI:10.32604/iasc.2023.027614

    Abstract In a controlled indoor environment, line tracking has become the most practical and reliable navigation strategy for autonomous mobile robots. A line tracking robot is a self-mobile machine that can recognize and track a painted line on the floor. In general, the path is set and can be visible, such as a black line on a white surface with high contrasting colors. The robot’s path is marked by a distinct line or track, which the robot follows to move. Several scientific contributions from the disciplines of vision and control have been made to mobile robot vision-based navigation. Localization, automated map… More >

  • Open Access

    ARTICLE

    Analysis of Brushless DC Motor Using Enhanced Fopid Controller with ALO Algorithm

    K. Prathibanandhi1,*, R. Ramesh2, C. Yaashuwanth3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 543-557, 2022, DOI:10.32604/iasc.2022.025860

    Abstract The delivery of combined benefits of Alternating Current (AC) motor and Direct Current (DC) Motor makes the Brushless Direct Current (BLDC) motors as a unique feature in numerous industrial applications. The possibilities of running the motor at very high speed with extensive operating life span of BLDC with miniature and its compact design make it an un-ignorable option for Electrical Engineers. With many advantages, till managing as well as controlling the speed of BLDC is complicated. This work is intended to come up with an effective control of speed of the motor through Torque Ripple Minimization Route and an Enhanced-Fractional… More >

  • Open Access

    ARTICLE

    Deep Learning Control for Autonomous Robot

    Rihem Farkh1,2, Saad Alhuwaimel3,*, Sultan Alzahrani3, Khaled Al Jaloud1, Mohammad Tabrez Quasim4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2811-2824, 2022, DOI:10.32604/cmc.2022.020259

    Abstract Several applications of machine learning and artificial intelligence, have acquired importance and come to the fore as a result of recent advances and improvements in these approaches. Autonomous cars are one such application. This is expected to have a significant and revolutionary influence on society. Integration with smart cities, new infrastructure and urban planning with sophisticated cyber-security are some of the current ramifications of self-driving automobiles. The autonomous automobile, often known as self-driving systems or driverless vehicles, is a vehicle that can perceive its surroundings and navigate predetermined routes without human involvement. Cars are on the verge of evolving into… More >

  • Open Access

    ARTICLE

    Metaheuristics Algorithm for Tuning of PID Controller of Mobile Robot System

    Harsh Goud1, Prakash Chandra Sharma2, Kashif Nisar3,7,*, Muhammad Reazul Haque4, Ag. Asri Ag. Ibrahim3, Narendra Singh Yadav2, Pankaj Swarnkar5, Manoj Gupta6, Laxmi Chand6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3481-3492, 2022, DOI:10.32604/cmc.2022.019764

    Abstract Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response, less human interference, high dependability, improved hygiene, and reduced aging effects. That is why, in recent years, robotic aid has emerged as a blossoming solution to many challenges in the medical industry. In this manuscript, meta-heuristics (MH) algorithms, specifically the Firefly Algorithm (FF) and Genetic Algorithm (GA), are applied to tune PID controller constraints such as Proportional gain Kp Integral gain Ki and Derivative gain Kd. The controller is used to control Mobile Robot System (MRS) at the required set… More >

  • Open Access

    ARTICLE

    Tuning Rules for Fractional Order PID Controller Using Data Analytics

    P. R. Varshini*, S. Baskar, M. Varatharajan, S. Sadhana

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1787-1799, 2022, DOI:10.32604/iasc.2022.024192

    Abstract

    Flexibility and robust performance have made the FOPID (Fractional Order PID) controllers a better choice than PID (Proportional, Integral, Derivative) controllers. But the number of tuning parameters decreases the usage of FOPID controllers. Using synthetic data in available FOPID tuners leads to abnormal controller performances limiting their applicability. Hence, a new tuning methodology involving real-time data and overcomes the drawbacks of mathematical modeling is the need of the hour. This paper proposes a novel FOPID controller tuning methodology using machine learning algorithms. Feed Forward Back Propagation Neural Network (FFBPNN), Multi Least Squares Support Vector Regression (MLSSVR) chosen to design Machine… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based PID Controller for an Eddy Current Dynamometer

    İhsan Uluocak1,*, Hakan Yavuz2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1229-1243, 2022, DOI:10.32604/iasc.2022.023835

    Abstract This paper presents a design and real-time application of an efficient Artificial Intelligence (AI) method assembled with PID controller of an eddy current dynamometer (ECD) for robustness due to highly nonlinear system by reason of some magnetism phenomena such as skin effect and dissipated heat of eddy currents. PID Control which is known as the most popular conventional control method in industry is inadequate for such nonlinear systems. On the other hand, Adaptive Neural Fuzzy Interference System (ANFIS), Single Hidden Layer Neural Network (SHLNN), General Regression Neural Network (GRNN), and Radial Basis Neural Network (RBNN) are examples used as artificial… More >

  • Open Access

    ARTICLE

    PSO Based Multi-Objective Approach for Controlling PID Controller

    Harsh Goud1, Prakash Chandra Sharma2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Muhammad Reazul Haque4, Narendra Singh Yadav2, Pankaj Swarnkar5, Manoj Gupta6, Laxmi Chand6

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4409-4423, 2022, DOI:10.32604/cmc.2022.019217

    Abstract CSTR (Continuous stirred tank reactor) is employed in process control and chemical industries to improve response characteristics and system efficiency. It has a highly nonlinear characteristic that includes complexities in its control and design. Dynamic performance is compassionate to change in system parameters which need more effort for planning a significant controller for CSTR. The reactor temperature changes in either direction from the defined reference value. It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature, and deviation from reference values may cause degradation of biomass quality. Design… More >

Displaying 11-20 on page 2 of 37. Per Page