Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,080)
  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    REVIEW

    An Overview of Segmentation Techniques in Breast Cancer Detection: From Classical to Hybrid Model

    Hanifah Rahmi Fajrin1,2, Se Dong Min1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072609 - 12 January 2026

    Abstract Accurate segmentation of breast cancer in mammogram images plays a critical role in early diagnosis and treatment planning. As research in this domain continues to expand, various segmentation techniques have been proposed across classical image processing, machine learning (ML), deep learning (DL), and hybrid/ensemble models. This study conducts a systematic literature review using the PRISMA methodology, analyzing 57 selected articles to explore how these methods have evolved and been applied. The review highlights the strengths and limitations of each approach, identifies commonly used public datasets, and observes emerging trends in model integration and clinical relevance. More >

  • Open Access

    ARTICLE

    A Dual-Stream Framework for Landslide Segmentation with Cross-Attention Enhancement and Gated Multimodal Fusion

    Md Minhazul Islam1,2, Yunfei Yin1,2,*, Md Tanvir Islam1,2, Zheng Yuan1,2, Argho Dey1,2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072550 - 12 January 2026

    Abstract Automatic segmentation of landslides from remote sensing imagery is challenging because traditional machine learning and early CNN-based models often fail to generalize across heterogeneous landscapes, where segmentation maps contain sparse and fragmented landslide regions under diverse geographical conditions. To address these issues, we propose a lightweight dual-stream siamese deep learning framework that integrates optical and topographical data fusion with an adaptive decoder, guided multimodal fusion, and deep supervision. The framework is built upon the synergistic combination of cross-attention, gated fusion, and sub-pixel upsampling within a unified dual-stream architecture specifically optimized for landslide segmentation, enabling efficient… More >

  • Open Access

    ARTICLE

    From Budget-Aware Preferences to Optimal Composition: A Dual-Stage Framework for Wireless Energy Service Optimization

    Haotian Zhang, Jing Li*, Ming Zhu, Zhiyong Zhao, Hongli Su, Liming Sun

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072381 - 12 January 2026

    Abstract In the wireless energy transmission service composition optimization problem, a key challenge is accurately capturing users’ preferences for service criteria under complex influencing factors, and optimally selecting a composition solution under their budget constraints. Existing studies typically evaluate satisfaction solely based on energy transmission capacity, while overlooking critical factors such as price and trustworthiness of the provider, leading to a mismatch between optimization outcomes and user needs. To address this gap, we construct a user satisfaction evaluation model for multi-user and multi-provider scenarios, systematically incorporating service price, transmission capacity, and trustworthiness into the satisfaction assessment… More >

  • Open Access

    ARTICLE

    LP-YOLO: Enhanced Smoke and Fire Detection via Self-Attention and Feature Pyramid Integration

    Qing Long1, Bing Yi2, Haiqiao Liu3,*, Zhiling Peng1, Xiang Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072058 - 12 January 2026

    Abstract Accurate detection of smoke and fire sources is critical for early fire warning and environmental monitoring. However, conventional detection approaches are highly susceptible to noise, illumination variations, and complex environmental conditions, which often reduce detection accuracy and real-time performance. To address these limitations, we propose Lightweight and Precise YOLO (LP-YOLO), a high-precision detection framework that integrates a self-attention mechanism with a feature pyramid, built upon YOLOv8. First, to overcome the restricted receptive field and parameter redundancy of conventional Convolutional Neural Networks (CNNs), we design an enhanced backbone based on Wavelet Convolutions (WTConv), which expands the… More >

  • Open Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026

    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

  • Open Access

    ARTICLE

    : A Protocol Message Structure Reconstruction Method Based on Execution Slice Embedding

    Yuyao Huang, Hui Shu, Fei Kang*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071552 - 12 January 2026

    Abstract Message structure reconstruction is a critical task in protocol reverse engineering, aiming to recover protocol field structures without access to source code. It enables important applications in network security, including malware analysis and protocol fuzzing. However, existing methods suffer from inaccurate field boundary delineation and lack hierarchical relationship recovery, resulting in imprecise and incomplete reconstructions. In this paper, we propose ProRE, a novel method for reconstructing protocol field structures based on program execution slice embedding. ProRE extracts code slices from protocol parsing at runtime, converts them into embedding vectors using a data flow-sensitive assembly language model, More >

Displaying 1-10 on page 1 of 2080. Per Page