Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Glycolysis Recycling of Waste Polyurethane Rigid Foam Using Different Catalysts

    Xiaohua Gu, Hongxiang Luo*, Shiwei Lv, Peng Chen

    Journal of Renewable Materials, Vol.9, No.7, pp. 1253-1266, 2021, DOI:10.32604/jrm.2021.014876 - 18 March 2021

    Abstract Dramatically increasing waste polyurethane rigid foam (WPRF) draws the attention of the world. A mixture of ethylene glycol (EG) and diethylene glycol (DEG) is used as glycolysis agents. WPRF was subjected to alcoholysis using different catalysts which are titanium ethylene glycol and potassium hydroxide to obtain recycled polyol, respectively. The effect of a different catalyst on the viscosity and hydroxyl value of recycled polyol is discussed. The regenerated polyurethane (RPU) is performed using the recycled polyol. Infrared spectrum, compressive strength, apparent density, water absorption, scanning electron microscope, and thermogravimetric analysis are carried out to investigate… More >

  • Open Access

    ARTICLE

    Discrete Element Simulation of Asphalt Pavement Milling Process to Improve the Utilization of Milled Old Mixture

    Jianmin Wu*, Bingbing Zhang, Chunsheng Wu, Zhiqiang Shu, Shaoqing Li, Jianqi Yang

    Journal of Renewable Materials, Vol.9, No.5, pp. 993-1011, 2021, DOI:10.32604/jrm.2021.014304 - 20 February 2021

    Abstract In order to improve the utilization of milling materials, save stone resources and reduce milling energy consumption, the aged Styrene-butadiene-styrene (SBS) modified asphalt was used as a binder to prepare AC-16 asphalt mixture to simulate old asphalt pavement materials. First, the test and discrete element simulation results of uniaxial compression tests were used to calibrate the parameters of the parallel bonding contact model between asphalt mortar and aggregates. On this basis, a microscopic model of the asphalt mixture was established to simulate the old asphalt pavement. Then, the discrete element software PFC (Particle Flow Code)… More >

  • Open Access

    ARTICLE

    Use of Scrapped Rubber Tires for Sustainable Construction of Manhole Covers

    Sadaqat Ullah Khan1, Afzal Ahmed1,*, Sajjad Ali2, Ayesha Ayub2, Ahmed Shuja1, Muhammad Ahsan Shahid1

    Journal of Renewable Materials, Vol.9, No.5, pp. 1013-1029, 2021, DOI:10.32604/jrm.2021.014344 - 20 February 2021

    Abstract Scrapped tires from vehicles are produced in large quantities. Despite numerous existing uses of scrapped tires, a large quantity ends up at the landfill sites, which contributes to environmental degradation. The development of more applications of scrapped tire usage can reduce the disposal of tires at landfill sites. This research proposes a novel use of scrapped tires by using the strips taken from scrapped tires in replacement of steel bars as reinforcement. Manhole covers were produced using scrapped tires by completely replacing the steel with scrapped tires. Four different samples of manhole covers were prepared… More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Flax Fibre Reinforced Elium Composite: Experimental and Numerical Studies

    Sami Allagui1,2,*, Abderrahim El Mahi1, Jean-Luc Rebiere1, Moez Beyaoui2, Anas Bouguecha2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.9, No.4, pp. 695-721, 2021, DOI:10.32604/jrm.2021.013586 - 01 February 2021

    Abstract This manuscript deals with the effects of recycling on the static and dynamic properties of flax fibers reinforced thermoplastic composites. The corresponding thermoplastic used in this work is Elium resin. It’s the first liquid thermoplastic resin that allows the production of recycled composite parts with promising mechanical behavior. It appeared on the resin market in 2014. But until now, no studies were available concerning how it can be recycled and reused. For this study, a thermocompression recycling process was investigated and applied to Elium resin. Flax fiber-reinforced Elium composites were produced using a resin infusion… More >

  • Open Access

    ARTICLE

    Utilization of Pineapple Crown Fiber and Recycled Polypropylene for Production of Sustainable Composites

    Alexandra Augusta Reichert1, Mariana Ribas de Sá2, Gabriela Escobar Hochmuller da Silva1, Cesar Augusto Gonçalves Beatrice3, André Ricardo Fajardo4, Amanda Dantas de Oliveira1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1327-1341, 2020, DOI:10.32604/jrm.2020.010291 - 31 August 2020

    Abstract Nowadays, the production of consumer goods is based on the use of non-renewable raw materials, which in recent years has been performing as a problem for the environment. Considering the large number of available biofibers in nature, their use in the development of polymeric composites has inevitably emerged, it is also necessary to take into account the countless discarded plastics that still have the potential to be reused. In this work, fibers were extracted from pineapple crown residues and utilized to compose sustainable composites using recycled polypropylene from cups discarded in the trash as a… More >

  • Open Access

    ARTICLE

    NaOH/Urea Swelling Treatment and Hydrothermal Degradation of Waste Cotton Fiber

    Lixia Gao1, Sheng Shi1,2,*, Wensheng Hou1, Shuhua Wang1, Zhifeng Yan1, Chao Ge1

    Journal of Renewable Materials, Vol.8, No.6, pp. 703-713, 2020, DOI:10.32604/jrm.2020.09055 - 12 May 2020

    Abstract In this study, waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber. The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution, and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber. The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample. Moreover, the cotton fiber presented both a convoluted structure and a coarser surface,… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Waterborne Polyurethane/Cellulose Nanocrystal Composite Membrane from Recycling Waste Paper

    Xing Zhou1,*, Xin Zhang1, Dong Wang1, Changqing Fang1,*, Wanqing Lei1, Zhigang Huang2, Yonghua Song1, Xinyu He1, Yingwei Huang1

    Journal of Renewable Materials, Vol.8, No.6, pp. 631-645, 2020, DOI:10.32604/jrm.2020.010176 - 12 May 2020

    Abstract Cellulose plays a key role in abundant organic natural materials meeting the increasing demand for green and biocompatible products. The highly crystalline nanoscale component of cellulose nanocrystals has recently attracted great attention due to the versatile performance as filler or matrix in producing functional materials. In this work, we prepared the waterborne polyurethane via a prepolymer process, and obtained cellulose and cellulose nanocrystals from waste paper via a facile acid hydrolysis process. After that, the cellulose nanocrystals were assembled into film and mixed with polyurethane to prepare flexible polyurethane/cellulose nanocrystals composite membrane with different soaking… More >

  • Open Access

    REVIEW

    Review of Microplastic Pollution in the Environment and Emerging Recycling Solutions

    Gregory Reimonn1, Taofeng Lu1, Neeti Gandhi2, Wan-Ting Chen1,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1251-1268, 2019, DOI:10.32604/jrm.2019.08055

    Abstract Microplastic pollution represents a side-effect stemming from a global plastic waste mismanagement problem and includes degraded particles or mass produced plastic particles less than 5 mm in largest dimension. The small nature of microplastics gives this area of pollution different environmental concerns than general plastic waste in the environment. The biological toxicity of particles, their internal components, and their surface level changes all present opportunities for these particles to adversely affect the environment around them. Thus, it is necessary to review the current literature surrounding this topic and identify areas where the study of microplastic More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Short Alfa Fibre Reinforced Polypropylene Composite

    Fatima Ezzahra El Abbassi1,*, Mustapha Assarar2, Rezak Ayad2, Hamid Sabhi2, Stephane Buet2, Nouzha Lamdouar3

    Journal of Renewable Materials, Vol.7, No.3, pp. 253-267, 2019, DOI:10.32604/jrm.2019.01759 - 14 July 2021

    Abstract This paper aims at studying the effect of recycling on the static and dynamic properties of short alfa fibre reinforced polypropylene. For this purpose, alfa fibres reinforced composites were elaborated by an injection moulding process and were subjected to different mechanical recycling cycles. Then, non-recycled and recycled materials were subjected to static tests and Dynamic Mechanical Analysis (DMA) to evaluate the effect of recycling on their behaviour. Besides, the effects of alkali and salt water treatments on the static and dynamic properties of the alfa composite were also investigated. The obtained results show that tensile More >

  • Open Access

    ARTICLE

    Impact of Natural Oil-Based Recycled Polyols on Properties of Cast Polyurethanes

    Hynek Beneš, Aleksandra Paruzel*, Jiří Hodan and Olga Trhlíková

    Journal of Renewable Materials, Vol.6, No.7, pp. 697-706, 2018, DOI:10.32604/JRM.2018.00011

    Abstract In this study, castor oil, rapeseed oil and medium chain triglycerides of coconut oil, were transesterified by means of 2-ethyl-2-hydroxymethyl-1,3-propanediol (trimethylolpropane) and consequently used to convert polycarbonate waste from end-of-life vehicles into liquid polyols. The prepared recycled polyols, composed uniquely of renewable and recycled components, had a hydroxyl number of ca. 250 mg KOH·g−1. They were successfully applied as 100% replacement of a virgin polyol for preparation of solid crosslinked polyurethanes (PU) by solvent-free casting. The produced rigid cast PU exhibited the main transition temperature ranging from 44°C to 53°C, the hardness value from 46 More >

Displaying 21-30 on page 3 of 32. Per Page