Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (350)
  • Open Access

    ARTICLE

    Computational Characterization and Evaluation of Deformation Behavior of Spherulite of High Density Polyethylene in Mesoscale Domain

    Y. Tomita 1, M. Uchida 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 239-248, 2005, DOI:10.3970/cmes.2005.010.239

    Abstract In this study, we clarified the micro- to mesoscopic deformation behavior of a semicrystalline polymer by employing a large-deformation finite element homogenization method. The crystalline plasticity theory with a penalty method for the inextensibility of the chain direction and the nonaffine molecular chain network theory were applied for the representation of the deformation behavior of the crystalline and amorphous phases, respectively, in the composite microstructure of the semicrystalline polymer. The 3D structure of lamellae in the spherulite of high-density polyethylene was modeled, and the tensile and compressive deformation behaviors were investigated. A series of computational simulations clarified the difference in… More >

  • Open Access

    ARTICLE

    On Interpolation in SPH

    R. Vignjevic, T. De Vuyst, M. Gourma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 319-336, 2001, DOI:10.3970/cmes.2001.002.319

    Abstract The work presented provides an overview of different types of kernel interpolation used in the SPH method: conventional SPH, normalised SPH (NSPH), corrected kernel SPH (CSPH) and normalised corrected kernel SPH (NCSPH). These four methods are considered in a fully mesh-free form (using no background mesh). To illustrate the effect of using different interpolation methods two problems were simulated: a 1D symmetric elastic impact problem, and a shock-tube. An overview of the simulation results for the two problems is given. Shortcomings for the interpolation schemes tested were identified and discussed. It is concluded that NCSPH provides the best results. To… More >

  • Open Access

    ARTICLE

    To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

    Xiang-YangLi1, Shang-Hua Teng2, Peng-Jun Wan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 97-116, 2001, DOI:10.3970/cmes.2001.002.097

    Abstract To conduct numerical simulations by finite element methods, we often need to generate a high quality mesh, yet with a smaller number of elements. Moreover, the size of each of the elements in the mesh should be approximately equal to a given size requirement. Li et al. recently proposed a new method, named biting, which combines the strengths of advancing front and sphere packing. It generates high quality meshes with a theoretical guarantee. In this paper, we show that biting squares instead of circles not only generates high quality meshes but also has the following advantages. It is easier to… More >

  • Open Access

    ARTICLE

    Electro-Deposition of Asphaltenes from Abu Dhabi Crude Oil/Synthetic Formation Water Mixtures

    Hadil Abu Khalifeh1, Hadi Belhaj2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.3, pp. 124-135, 2016, DOI:10.3970/fdmp.2016.012.124

    Abstract In this work, asphaltenes precipitation and deposition induced by applying an electric field to Abu Dhabi crude oil sample were studied. The asphaltic particle electrical charge and asphaltic deposits mass at different operating conditions were determined. Direct current (DC) was applied between two graphite electrodes dipped in crude oil/synthetic formation water mixture of 240K ppm salinity. Three current densities of 10, 20, and 30 A/m2 were applied. Deposits were collected on the electrodes surfaces and their mass was recorded using low capacity load cells (up to 50g). Anodic and cathodic deposits were observed at different operating conditions. The results revealed… More >

  • Open Access

    ARTICLE

    Preliminary Validation of Fluid-Structure Interaction Modeling for Hypersonic Deployable Re-Entry Systems

    P. Pasolini1,2, R. Savino1, F. Franco1, S. De Rosa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 301-324, 2015, DOI:10.3970/fdmp.2015.011.301

    Abstract The aim of the present work is to provide a first attempt to set an aero-thermo-elastic methodology for deployable atmospheric re-entry decelerators operating at high Mach number and high dynamic pressure. Because of the severity of re-entry conditions such as high temperatures, high pressures and high velocities, the behavior of their flexible structures is a hard target to assess. In this paper a partitioned Fluid Structure Interaction (FSI) approach based on the integration of different commercial software (STAR-CCM+ and ABAQUS) is presented. In order to validate the specific codes and the overall strategy for structural and fluid dynamics analyses of… More >

  • Open Access

    ARTICLE

    MHD Effect on Relative Motion of Two Immiscible Liquid Spheres

    D.V. Jayalakshmamma1, Dinesh P.A.2, M. Sankar3, D.V. Ch,rashekhar4

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 343-357, 2014, DOI:10.3970/fdmp.2014.010.343

    Abstract We examine the motion of the two concentric immiscible liquid spheres with different viscosities in an electrically conducting fluid in the presence of transverse magnetic field. The inner sphere is assumed to move at a constant velocity. The Stoke’s equation along with the Lorentz force is considered to model the resulting fluid flow, analytical solutions being obtained by the similarity solution method in terms of modified Bessel’s functions. Streamlines related to the fluid circulation in the annulus between the two liquid spheres and inside the inner liquid sphere are presented for different combinations of the governing non-dimensional parameters. More >

  • Open Access

    ARTICLE

    The Influence of Annealing in Nitrogen Atmosphere on the Electrical, Optical and Structural Properties of Spray-Deposited ZnO Thin Films

    Shadia J Ikhmayies1, Naseem M. Abu El-Haija2, Riyad N. Ahmad-Bitar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 219-232, 2010, DOI:10.3970/fdmp.2010.006.219

    Abstract Large area and highly uniform polycrystalline ZnO thin films have been produced by a spray pyrolysis (SP) technique resorting to a customized system (spraying) on glass substrates at temperature Ts= 450℃. This study deals with the related investigation about the influence of heat treatment (in nitrogen atmosphere) on the resulting properties (electrical, optical and structural) of such films. Properties are analyzed by means of I-V plots, transmittance curves, X-Ray diffractograms (XRD) and scanning electron microscope (SEM) micrographs. Results show that the resistivity of the films decreases from about 200W.cm for the as-deposited films to about 95W.cm for annealed films. XRD… More >

  • Open Access

    ARTICLE

    Solutocapillary Convection in Spherical Shells with a Receding and Deforming Interface

    Pravin Subramanian1, Abdelfattah Zebib1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.3, pp. 139-162, 2008, DOI:10.3970/fdmp.2008.004.139

    Abstract A theoretical and computational study of solutocapillary driven Marangoni instabilities in small spherical shells is presented. The shells contain a binary fluid with an evaporating solvent. The viscosity is a strong function of the solvent concentration, the inner surface of the shell is assumed impermeable and stress free, while non-linear boundary conditions are modeled and prescribed at the receding outer boundary. A time-dependent diffusive state is possible and may lose stability through the Marangoni mechanism due to surface tension dependence on solvent concentration (buoyant forces are negligible in this micro-scale problem). The Capillary number (Ca) provides a measure of the… More >

  • Open Access

    ARTICLE

    Aerothermodynamic and Feasibility Study of a Deployable Aerobraking Re-Entry Capsule

    R. Savino1, V. Carandente1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 453-476, 2012, DOI:10.3970/fdmp.2012.008.453

    Abstract A new small recoverable re-entry capsule with deployable heat shield is analyzed. The possible utilization of the capsule is for safe Earth return of science payloads or data from low Earth orbit at an inexpensive cost, taking advantage of its deployable structure to perform an aerobraking re-entry mission, with relatively low heat and mechanical loads. The system concept for the heat shield is based on umbrella-like frameworks and existing ceramic fabrics. An aerothermodynamic analysis is developed to show that the peak heat flux, for a capsule with a ballistic coefficient lower than 10 kg/m2, is in the range 250-350 kW/m2More >

  • Open Access

    ARTICLE

    Predicting The Onset of Asphaltene Precipitation by Virial EOS

    S. Sabbaghi1, M. Shariaty-Niassar2, Sh. Ayatollahi1, A. Jahanmiri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 113-124, 2008, DOI:10.3970/fdmp.2008.004.113

    Abstract In this study, the Onset of Asphaltene Precipitation is predicted by a modified Virial equation of state. The bases of quantum mechanics and statistical thermodynamics are used to evaluate the potential energy and intermolecular forces related to asphaltene molecules. The Virial equation of state is modified using group-contribution-methods for asphaltenes, which are assumed to be polymeric-like compounds consisting of aggregates of monodisperse asphaltene monomers. It is shown how the modified Virial equation of state with the Peneloux correction leads to estimate the molar volume and solubility parameter. These parameters are also compared successfully with results provided by the Soave-Redlich-Kwong equation… More >

Displaying 321-330 on page 33 of 350. Per Page