Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (635)
  • Open Access

    ARTICLE

    Numerical Simulation via Homotopy Perturbation Approach of a Dissipative Squeezed Carreau Fluid Flow Due to a Sensor Surface

    Sara I. Abdelsalam1,2,*, W. Abbas3, Ahmed M. Megahed4, Hassan M. H. Sadek5, M. S. Emam5

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1511-1527, 2025, DOI:10.32604/fhmt.2025.069359 - 31 October 2025

    Abstract This study rigorously examines the interplay between viscous dissipation, magnetic effects, and thermal radiation on the flow behavior of a non-Newtonian Carreau squeezed fluid passing by a sensor surface within a micro cantilever channel, aiming to deepen our understanding of heat transport processes in complex fluid dynamics scenarios. The primary objective is to elucidate how physical operational parameters influence both the velocity of fluid flow and its temperature distribution, utilizing a comprehensive numerical approach. Employing a combination of mathematical modeling techniques, including similarity transformation, this investigation transforms complex partial differential equations into more manageable ordinary… More >

  • Open Access

    ARTICLE

    Analysis of Heat Transfer inside Rectangular Micro-Channel with Wavy Surface and Hybrid Nanofluids

    Banan Najim Abdullah1, Karam Hashim Mohammed1, Ammar Hassan Soheel1, Bashar Mahmood Ali2, Omar Rafae Alomar1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1681-1700, 2025, DOI:10.32604/fhmt.2025.066814 - 31 October 2025

    Abstract The current work aims to numerically investigate the impact of using (50% ZnO and 50% Al2O3) hybrid nanofluid (HNf) on the performance of convective heat transfer inside a horizontal wavy micro-channel. This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries. The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles (50% Al2O3 and 50% ZnO) to pure water on the rate of heat transfer. The governing equations are numerically solved by… More >

  • Open Access

    ARTICLE

    Influence Mechanism of the Nano-Structure on Phase Change Liquid Cooling Features for Data Centers

    Yifan Li*, Congzhe Zhu, Rong Gao*, Bin Yang

    Energy Engineering, Vol.122, No.11, pp. 4523-4539, 2025, DOI:10.32604/ee.2025.068480 - 27 October 2025

    Abstract The local overheating issue is a serious threat to the safe operation of data centers (DCs). The chip-level liquid cooling with pool boiling is expected to solve this problem. The effect of nano configuration and surface wettability on the boiling characteristics of copper surfaces is studied using molecular dynamics (MD) simulation. The argon is chosen as the coolant, and the wall temperature is 300 K. The main findings and innovations are as follows. (1) Compared to the smooth surface and fin surface, the cylindrical nano cavity obtains the superior boiling performance with earlier onset of… More > Graphic Abstract

    Influence Mechanism of the Nano-Structure on Phase Change Liquid Cooling Features for Data Centers

  • Open Access

    PROCEEDINGS

    Design and Optimization of the Combined Airbag Landing System for Lunar Cargo Delivery

    Yilun Xiang1, Xuan Zhou2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011675

    Abstract As lunar exploration advances, the transportation of substantial quantities of supplies to the lunar surface will be essential for forthcoming manned missions and lunar development initiatives. To address the unique lunar environment characterized by the thin atmosphere and low gravity, a new combined airbag landing system for lunar cargo delivery was proposed, specifically designed to avoid generating a lot of dust during venting processes. A cushioning dynamics model of the combined airbag landing system was developed and verified through the ground drop experiment. Given the complexity of actual landing conditions, the effects of landing parameters… More >

  • Open Access

    PROCEEDINGS

    An Advanced Design Optimization and Modeling Method of Type IV Composite Hydrogen Cylinder with Experimental Validations

    Ruiqi Li1,2, Hongda Chen1,2,*, Haixiao Hu1,2,3, Yu Zhang2, Shuxin Li1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011327

    Abstract Composite hydrogen cylinders are recognized as the most efficient solution for storage and transportation of high-pressure gaseous hydrogen. The plastic-lined and fully carbon fiber-wound Type IV composite cylinders are one of the most attractive advanced hydrogen storage technologies. The design of carbon fiber reinforcements on the dome section of the cylinder is one of the critical challenges in the development of Type IV composite hydrogen cylinders. Conventional design approaches ignored the variable angle of fiber-wound layers and the influence of fiber angle and thickness variations in the dome section on design and often result in… More >

  • Open Access

    PROCEEDINGS

    Flow and Heat Transfer Performance of Porous Heat Exchanger Based on Conformal Geometry Design

    Yijin Zhang, Panding Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011144

    Abstract As a type of porous material with high porosity and a large surface-area-to-volume ratio, triply periodic minimal surface (TPMS) structures divide space into two non-interconnected parts. This increases the contact area while maintaining full connectivity and smoothness, which helps reduce flow resistance, making it naturally suited for applications in heat exchange designs. The advancement of additive manufacturing (AM) technology has contributed to the development of TPMS-based heat exchangers. However, due to the complexity of fluid heat exchanger designs, developing effective representations, models, and optimization schemes for TPMS structures in multi-fluid heat exchange problems is very… More >

  • Open Access

    ARTICLE

    DSC-RTDETR: An Improved RTDETR Based Crack Detection on Concrete Surface

    Yan Zhou, Hengyang Wu*

    Journal on Artificial Intelligence, Vol.7, pp. 381-396, 2025, DOI:10.32604/jai.2025.071674 - 20 October 2025

    Abstract Crack Detection is crucial for ensuring the safety and durability of buildings. With the advancement of deep learning, crack detection has increasingly adopted convolutional neural network (CNN)-based approaches, achieving remarkable progress. However, current deep learning methods frequently encounter issues such as high computational complexity, inadequate real-time performance, and low accuracy. This paper proposes a novel model to improve the performance of concrete crack detection. Firstly, the You Only Look Once (YOLOv11) backbone replaces the original Real-Time Detection Transformer (RTDETR) backbone, reducing computational complexity and model size. Additionally, the Dynamic Snake Convolution (DSConv) has been introduced More >

  • Open Access

    ARTICLE

    Bagasse Fibers Surface Heat Treatment and Its Effect on Mechanical Properties of Starch/Poly (Vinyl Alcohol) Composites

    Xiangyang Zhou1, Yashi Wang1, Min Xiao1,*, Jiajun Liu1,2, Jiahao Wen1, Haodong Shen3, Hucan Hong1

    Journal of Polymer Materials, Vol.42, No.3, pp. 795-810, 2025, DOI:10.32604/jpm.2025.068200 - 30 September 2025

    Abstract Sugarcane bagasse (SCB) is a promising natural fiber for bio-based composites, but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance. While chemical treatments have been extensively explored, limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers. This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly (vinyl alcohol) (PVA) composites. Characterization techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning… More >

  • Open Access

    REVIEW

    Design of Nanostructured Surfaces and Hydrogel Coatings for Anti-Bacterial Adhesion

    Nanpu Cao1, Huan Luo1, Song Yue1, Yong Chen1, Mao Xu1, Pu Cao1, Tao Xin1, Hongying Luo1, Fa Zhang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 661-675, 2025, DOI:10.32604/jpm.2025.067313 - 30 September 2025

    Abstract This review systematically summarizes recent advancements in the design of antibacterial hydrogels and the surface-related factors influencing microbial adhesion to polymeric materials. Hydrogels, characterized by their three-dimensional porous architecture and ultra-high water content, serve as ideal platforms for incorporating antibacterial agents (e.g., metal ions, natural polymers) through physical/chemical interactions, enabling sustained release and enhanced antibacterial efficacy. For traditional polymers, surface properties (e.g., roughness, charge, superhydrophobicity, free energy, nanoforce gradients) play critical roles in microbial adhesion. Modifying the surface properties of polymers through surface treatment can regulate antibacterial performance. In particular, by referencing the micro/nanostructures found More >

  • Open Access

    ARTICLE

    Shallow Water Waves with Surface Tension by Laplace–Adomian Decomposition

    Oswaldo González-Gaxiola1, Yakup Yildirim2,3,4, Luminita Moraru5,6, Anjan Biswas7,8,9,10,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2273-2287, 2025, DOI:10.32604/fdmp.2025.067959 - 30 September 2025

    Abstract This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension. In the absence of surface tension, shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation, which incorporates fourth-order dispersion. Under this framework, solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion, producing waveforms whose propagation speed, amplitude, and width depend largely on depth and initial disturbance. The resulting dynamics are comparatively smoother, with solitary waves maintaining coherent structures and shock waves displaying gradual… More > Graphic Abstract

    Shallow Water Waves with Surface Tension by Laplace–Adomian Decomposition

Displaying 31-40 on page 4 of 635. Per Page