Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (261)
  • Open Access

    REVIEW

    New insight into the role of exosomes in idiopathic membrane nephropathy

    JIANHONG LIU1,#, KAI HE2,#, HAN WANG3,#, XIAOHONG CHENG1,*

    BIOCELL, Vol.48, No.1, pp. 21-32, 2024, DOI:10.32604/biocell.2023.045631

    Abstract Exosomes, nanoscale extracellular vesicles (EVs) derived from the invagination of the endosomal membrane, are secreted by a majority of cell types. As carriers of DNA, mRNA, proteins, and microRNAs, exosomes are implicated in regulating biological activities under physiological and pathological conditions. Kidney-derived exosomes, which vary in origin and function, may either contribute to the pathogenesis of disease or represent a potential therapeutic resource. Membranous nephropathy (MN), an autoimmune kidney disease characterized by glomerular damage, is a predominant cause of nephrotic syndrome. Notably, MN, especially idiopathic membranous nephropathy (IMN), often results in end-stage renal disease (ESRD), affecting approximately 30% of patients… More > Graphic Abstract

    New insight into the role of exosomes in idiopathic membrane nephropathy

  • Open Access

    ARTICLE

    Systematic analysis of DNA polymerases as therapeutic targets in pan-cancers

    ZHENHUA LI1, HUILAI LV1, FAN ZHANG1, ZIMING ZHU2, QIANG GUO3, MINGBO WANG1, CHAO HUANG1, LIJUAN CHEN4, WENPAN ZHANG4, YUN LI5,*, ZIQIANG TIAN1,*

    BIOCELL, Vol.48, No.1, pp. 123-138, 2024, DOI:10.32604/biocell.2023.031568

    Abstract Introduction: DNA polymerases are crucial for maintaining genome stability and influencing tumorigenesis. However, the clinical implications of DNA polymerases in tumorigenesis and their potential as anti-cancer therapy targets are not well understood. Methods: We conducted a systematic analysis using TCGA Pan-Cancer Atlas data and Gene Set Cancer Analysis results to examine the expression profiles of 15 DNA polymerases (POLYs) and their clinical correlations. We also evaluated the prognostic value of POLYs by analyzing their expression levels in relation to overall survival time (OS) using Kaplan-Meier survival curves. Additionally, we investigated the correlations between POLY expression and immune cells, DNA damage… More >

  • Open Access

    ARTICLE

    A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model

    Yaoyao Du, Xiangkui Jiang*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 303-327, 2024, DOI:10.32604/cmc.2023.046068

    Abstract To address the challenges of high complexity, poor real-time performance, and low detection rates for small target vehicles in existing vehicle object detection algorithms, this paper proposes a real-time lightweight architecture based on You Only Look Once (YOLO) v5m. Firstly, a lightweight upsampling operator called Content-Aware Reassembly of Features (CARAFE) is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles, reducing the missed detection rate and false detection rate. Secondly, a new prediction layer for tiny targets is added, and the feature fusion network is redesigned to enhance the… More >

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity of FA-functionalized NCCs to folate… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Infrared Small Target Detection Algorithm Based on ISTD-CenterNet

    Ning Li*, Shucai Huang, Daozhi Wei

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3511-3531, 2023, DOI:10.32604/cmc.2023.045987

    Abstract This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet (ISTD-CenterNet) network for detecting small infrared targets in complex environments. The method eliminates the need for an anchor frame, addressing the issues of low accuracy and slow speed. HRNet is used as the framework for feature extraction, and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects. A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image. Besides, an improved… More >

  • Open Access

    ARTICLE

    MF2-DMTD: A Formalism and Game-Based Reasoning Framework for Optimized Drone-Type Moving Target Defense

    Sang Seo1, Jaeyeon Lee2, Byeongjin Kim2, Woojin Lee2, Dohoon Kim3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2595-2628, 2023, DOI:10.32604/cmc.2023.042668

    Abstract Moving-target-defense (MTD) fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations. However, the existing naive MTD studies were conducted focusing only on wired network mutations. And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations, such as hostility, mobility, and dependency. Therefore, to solve these conceptual limitations, this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle… More >

  • Open Access

    ARTICLE

    C2Net-YOLOv5: A Bidirectional Res2Net-Based Traffic Sign Detection Algorithm

    Xiujuan Wang1, Yiqi Tian1,*, Kangfeng Zheng2, Chutong Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1949-1965, 2023, DOI:10.32604/cmc.2023.042224

    Abstract Rapid advancement of intelligent transportation systems (ITS) and autonomous driving (AD) have shown the importance of accurate and efficient detection of traffic signs. However, certain drawbacks, such as balancing accuracy and real-time performance, hinder the deployment of traffic sign detection algorithms in ITS and AD domains. In this study, a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed. An enhanced backbone network module, called C2Net, which uses an upgraded bidirectional Res2Net, was introduced to mitigate information loss in the feature extraction process and to achieve information… More >

  • Open Access

    ARTICLE

    Optimization of Blade Geometry of Savonius Hydrokinetic Turbine Based on Genetic Algorithm

    Jiahao Lu1, Fangfang Zhang1, Weilong Guang1, Yanzhao Wu1, Ran Tao1,2,*, Xiaoqin Li1,2, Ruofu Xiao1,2

    Energy Engineering, Vol.120, No.12, pp. 2819-2837, 2023, DOI:10.32604/ee.2023.042287

    Abstract Savonius hydrokinetic turbine is a kind of turbine set which is suitable for low-velocity conditions. Unlike conventional turbines, Savonius turbines employ S-shaped blades and have simple internal structures. Therefore, there is a large space for optimizing the blade geometry. In this study, computational fluid dynamics (CFD) numerical simulation and genetic algorithm (GA) were used for the optimal design. The optimization strategies and methods were determined by comparing the results calculated by CFD with the experimental results. The weighted objective function was constructed with the maximum power coefficient Cp and the high-power coefficient range R under multiple working conditions. GA helps… More >

  • Open Access

    ARTICLE

    Evaluating the Derivative Value of Smart Grid Investment under Dual Carbon Target: A Hybrid Multi-Criteria Decision-Making Analysis

    Na Yu1, Changzheng Gao2, Xiuna Wang2, Dongwei Li2,*, Weiyang You2

    Energy Engineering, Vol.120, No.12, pp. 2879-2901, 2023, DOI:10.32604/ee.2023.029426

    Abstract With the goal of “carbon peaking and carbon neutralization”, it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy. Smart grid investment has a significant driving effect (derivative value), and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core. Therefore, by analyzing the characterization of the derivative value of smart grid driven by investment, this paper constructs the evaluation index system of the derivative value of smart grid investment including… More >

  • Open Access

    ARTICLE

    Distribution Network Optimization Model of Industrial Park with Distributed Energy Resources under the Carbon Neutral Targets

    Xiaobao Yu*, Kang Yang

    Energy Engineering, Vol.120, No.12, pp. 2741-2760, 2023, DOI:10.32604/ee.2023.028041

    Abstract Taking an industrial park as an example, this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources (DERs). The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data. To predict and analyze the load growth of the industrial park, an improved back-propagation algorithm is employed. Furthermore, the study classifies users within the industrial park according to their specific power consumption and supply requirements. This user segmentation allows for the introduction of three constraints: node voltage, wire current, and capacity of DERs. By incorporating these… More >

Displaying 21-30 on page 3 of 261. Per Page