Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access


    Political Ideology Detection of News Articles Using Deep Neural Networks

    Khudran M. Alzhrani*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 483-500, 2022, DOI:10.32604/iasc.2022.023914

    Abstract Individuals inadvertently allow emotions to drive their rational thoughts to predetermined conclusions regarding political partiality issues. Being well-informed about the subject in question mitigates emotions’ influence on humans’ cognitive reasoning, but it does not eliminate bias. By nature, humans tend to pick a side based on their beliefs, personal interests, and principles. Hence, journalists’ political leaning is defining factor in the rise of the polarity of political news coverage. Political bias studies usually align subjects or controversial topics of the news coverage to a particular ideology. However, politicians as private citizens or public officials are also consistently in the media… More >

  • Open Access


    BERT-CNN: A Deep Learning Model for Detecting Emotions from Text

    Ahmed R. Abas1, Ibrahim Elhenawy1, Mahinda Zidan2,*, Mahmoud Othman2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2943-2961, 2022, DOI:10.32604/cmc.2022.021671

    Abstract Due to the widespread usage of social media in our recent daily lifestyles, sentiment analysis becomes an important field in pattern recognition and Natural Language Processing (NLP). In this field, users’ feedback data on a specific issue are evaluated and analyzed. Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research. Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature. Emotions describe a state of mind of distinct behaviors, feelings, thoughts and experiences. The main objective of this paper is to… More >

  • Open Access


    Mining the Chatbot Brain to Improve COVID-19 Bot Response Accuracy

    Mukhtar Ghaleb1,*, Yahya Almurtadha2, Fahad Algarni3, Monir Abdullah3, Emad Felemban4, Ali M. Alsharafi3, Mohamed Othman5, Khaled Ghilan6

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2619-2638, 2022, DOI:10.32604/cmc.2022.020358

    Abstract People often communicate with auto-answering tools such as conversational agents due to their 24/7 availability and unbiased responses. However, chatbots are normally designed for specific purposes and areas of experience and cannot answer questions outside their scope. Chatbots employ Natural Language Understanding (NLU) to infer their responses. There is a need for a chatbot that can learn from inquiries and expand its area of experience with time. This chatbot must be able to build profiles representing intended topics in a similar way to the human brain for fast retrieval. This study proposes a methodology to enhance a chatbot's brain functionality… More >

  • Open Access


    Epilepsy Radiology Reports Classification Using Deep Learning Networks

    Sengul Bayrak1,2, Eylem Yucel2,*, Hidayet Takci3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3589-3607, 2022, DOI:10.32604/cmc.2022.018742

    Abstract The automatic and accurate classification of Magnetic Resonance Imaging (MRI) radiology report is essential for the analysis and interpretation epilepsy and non-epilepsy. Since the majority of MRI radiology reports are unstructured, the manual information extraction is time-consuming and requires specific expertise. In this paper, a comprehensive method is proposed to classify epilepsy and non-epilepsy real brain MRI radiology text reports automatically. This method combines the Natural Language Processing technique and statistical Machine Learning methods. 122 real MRI radiology text reports (97 epilepsy, 25 non-epilepsy) are studied by our proposed method which consists of the following steps: (i) for a given… More >

  • Open Access


    Sentiment Analysis for Arabic Social Media News Polarity

    Adnan A. Hnaif1,*, Emran Kanan2, Tarek Kanan1

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 107-119, 2021, DOI:10.32604/iasc.2021.015939

    Abstract In recent years, the use of social media has rapidly increased and developed significant influence on its users. In the study of the behavior, reactions, approval, and interactions of social media users, detecting the polarity (positive, negative, neutral) of news posts is of considerable importance. This proposed research aims to collect data from Arabic social media pages, with the posts comprising the main unit in the dataset, and to build a corpus of manually-processed data for training and testing. Applying Natural Language Processing to the data is crucial for the computer to understand and easily manipulate the data. Therefore, Stop-Word… More >

  • Open Access


    A Quantum Spatial Graph Convolutional Network for Text Classification

    Syed Mustajar Ahmad Shah1, Hongwei Ge1,*, Sami Ahmed Haider2, Muhammad Irshad3, Sohail M. Noman4, Jehangir Arshad5, Asfandeyar Ahmad6, Talha Younas7

    Computer Systems Science and Engineering, Vol.36, No.2, pp. 369-382, 2021, DOI:10.32604/csse.2021.014234

    Abstract The data generated from non-Euclidean domains and its graphical representation (with complex-relationship object interdependence) applications has observed an exponential growth. The sophistication of graph data has posed consequential obstacles to the existing machine learning algorithms. In this study, we have considered a revamped version of a semi-supervised learning algorithm for graph-structured data to address the issue of expanding deep learning approaches to represent the graph data. Additionally, the quantum information theory has been applied through Graph Neural Networks (GNNs) to generate Riemannian metrics in closed-form of several graph layers. In further, to pre-process the adjacency matrix of graphs, a new… More >

  • Open Access


    Text Classification for Azerbaijani Language Using Machine Learning

    Umid Suleymanov1, Behnam Kiani Kalejahi1,2,*, Elkhan Amrahov1, Rashid Badirkhanli1

    Computer Systems Science and Engineering, Vol.35, No.6, pp. 467-475, 2020, DOI:10.32604/csse.2020.35.467

    Abstract Text classification systems will help to solve the text clustering problem in the Azerbaijani language. There are some text-classification applications for foreign languages, but we tried to build a newly developed system to solve this problem for the Azerbaijani language. Firstly, we tried to find out potential practice areas. The system will be useful in a lot of areas. It will be mostly used in news feed categorization. News websites can automatically categorize news into classes such as sports, business, education, science, etc. The system is also used in sentiment analysis for product reviews. For example, the company shares a… More >

  • Open Access


    Event Trigger Recognition Based on Positive and Negative Weight Computing and its Application

    Tao Liao1,‡, Weicheng Fu1,†, Shunxiang Zhang1,*, Zongtian Liu2,§

    Computer Systems Science and Engineering, Vol.35, No.5, pp. 311-319, 2020, DOI:10.32604/csse.2020.35.311

    Abstract Event trigger recognition is a sub-task of event extraction, which is important for text classification, topic tracking and so on. In order to improve the effectiveness of using word features as a benchmark, a new event trigger recognition method based on positive and negative weight computing is proposed. Firstly, the associated word feature, the part-of-speech feature and the dependency feature are combined. Then, the combination of these three features with positive and negative weight computing is used to identify triggers. Finally, the text classification is carried out based on the event triggers. Findings from our experiments show that the application… More >

  • Open Access


    Improving Chinese Word Representation with Conceptual Semantics

    Tingxin Wei1, 2, Weiguang Qu2, 3, *, Junsheng Zhou3, Yunfei Long4, Yanhui Gu3, Zhentao Xia3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1897-1913, 2020, DOI:10.32604/cmc.2020.010813

    Abstract The meaning of a word includes a conceptual meaning and a distributive meaning. Word embedding based on distribution suffers from insufficient conceptual semantic representation caused by data sparsity, especially for low-frequency words. In knowledge bases, manually annotated semantic knowledge is stable and the essential attributes of words are accurately denoted. In this paper, we propose a Conceptual Semantics Enhanced Word Representation (CEWR) model, computing the synset embedding and hypernym embedding of Chinese words based on the Tongyici Cilin thesaurus, and aggregating it with distributed word representation to have both distributed information and the conceptual meaning encoded in the representation of… More >

  • Open Access


    MII: A Novel Text Classification Model Combining Deep Active Learning with BERT

    Anman Zhang1, Bohan Li1, 2, 3, *, Wenhuan Wang1, Shuo Wan1, Weitong Chen4

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1499-1514, 2020, DOI:10.32604/cmc.2020.09962

    Abstract Active learning has been widely utilized to reduce the labeling cost of supervised learning. By selecting specific instances to train the model, the performance of the model was improved within limited steps. However, rare work paid attention to the effectiveness of active learning on it. In this paper, we proposed a deep active learning model with bidirectional encoder representations from transformers (BERT) for text classification. BERT takes advantage of the self-attention mechanism to integrate contextual information, which is beneficial to accelerate the convergence of training. As for the process of active learning, we design an instance selection strategy based on… More >

Displaying 21-30 on page 3 of 34. Per Page