Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3097-3112, 2023, DOI:10.32604/cmc.2023.040914

    Abstract Predicting traffic flow is a crucial component of an intelligent transportation system. Precisely monitoring and predicting traffic flow remains a challenging endeavor. However, existing methods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes, resulting in the loss of essential information and lower forecast performance. On the other hand, the availability of spatiotemporal data is limited. This research offers alternative spatiotemporal data with three specific features as input, vehicle type (5 types), holidays (3 types), and weather (10 conditions). In this study, the proposed model combines the advantages of the… More >

  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of the data graph and extract… More >

  • Open Access

    ARTICLE

    Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction

    Hong Zhang1,2,*, Gang Yang1, Hailiang Yu1, Zan Zheng1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1047-1063, 2023, DOI:10.32604/cmc.2023.039274

    Abstract To accurately predict traffic flow on the highways, this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism (CNN-BiLSTM-Attention) traffic flow prediction model based on Kalman-filtered data processing. Firstly, the original fluctuating data is processed by Kalman filtering, which can reduce the instability of short-term traffic flow prediction due to unexpected accidents. Then the local spatial features of the traffic data during different periods are extracted, dimensionality is reduced through a one-dimensional CNN, and the BiLSTM network is used to analyze the time series information. Finally, the Attention Mechanism assigns feature weights and performs Softmax regression. The experimental results… More >

  • Open Access

    ARTICLE

    Short Term Traffic Flow Prediction Using Hybrid Deep Learning

    Mohandu Anjaneyulu, Mohan Kubendiran*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1641-1656, 2023, DOI:10.32604/cmc.2023.035056

    Abstract Traffic flow prediction in urban areas is essential in the Intelligent Transportation System (ITS). Short Term Traffic Flow (STTF) prediction impacts traffic flow series, where an estimation of the number of vehicles will appear during the next instance of time per hour. Precise STTF is critical in Intelligent Transportation System. Various extinct systems aim for short-term traffic forecasts, ensuring a good precision outcome which was a significant task over the past few years. The main objective of this paper is to propose a new model to predict STTF for every hour of a day. In this paper, we have proposed… More >

  • Open Access

    ARTICLE

    Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems

    R. B. Sarooraj*, S. Prayla Shyry

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2071-2084, 2023, DOI:10.32604/iasc.2023.034716

    Abstract In Intelligent Transportation Systems (ITS), controlling the traffic flow of a region in a city is the major challenge. Particularly, allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the traffic flow. So, in this paper, the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized. Initially, the hotspots in a region are clustered using the density-based spatial clustering of applications with noise (DBSCAN) algorithm to find the hot spots at the peak hours in an urban area. Then, the optimal route is… More >

  • Open Access

    ARTICLE

    Intelligent Slime Mould Optimization with Deep Learning Enabled Traffic Prediction in Smart Cities

    Manar Ahmed Hamza1,*, Hadeel Alsolai2, Jaber S. Alzahrani3, Mohammad Alamgeer4,5, Mohamed Mahmoud Sayed6, Abu Sarwar Zamani1, Ishfaq Yaseen1, Abdelwahed Motwakel1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6563-6577, 2022, DOI:10.32604/cmc.2022.031541

    Abstract Intelligent Transportation System (ITS) is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality. With the help of big data and communication technologies, ITS offers real-time investigation and highly-effective traffic management. Traffic Flow Prediction (TFP) is a vital element in smart city management and is used to forecast the upcoming traffic conditions on transportation network based on past data. Neural Network (NN) and Machine Learning (ML) models are widely utilized in resolving real-time issues since these methods are capable of dealing with adaptive data over a period of time. Deep Learning… More >

  • Open Access

    ARTICLE

    Optimal Logistics Activities Based Deep Learning Enabled Traffic Flow Prediction Model

    Basim Aljabhan1, Mahmoud Ragab2,3,4,*, Sultanah M. Alshammari4,5, Abdullah S. Al-Malaise Al-Ghamdi4,6,7

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5269-5282, 2022, DOI:10.32604/cmc.2022.030694

    Abstract Traffic flow prediction becomes an essential process for intelligent transportation systems (ITS). Though traffic sensor devices are manually controllable, traffic flow data with distinct length, uneven sampling, and missing data finds challenging for effective exploitation. The traffic data has been considerably increased in recent times which cannot be handled by traditional mathematical models. The recent developments of statistic and deep learning (DL) models pave a way for the effectual design of traffic flow prediction (TFP) models. In this view, this study designs optimal attention-based deep learning with statistical analysis for TFP (OADLSA-TFP) model. The presented OADLSA-TFP model intends to effectually… More >

  • Open Access

    ARTICLE

    Networking Controller Based Real Time Traffic Prediction in Clustered Vehicular Adhoc Networks

    T. S. Balaji1,2, S. Srinivasan3,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2189-2203, 2023, DOI:10.32604/iasc.2023.028785

    Abstract The vehicular ad hoc network (VANET) is an emerging network technology that has gained popularity because to its low cost, flexibility, and seamless services. Software defined networking (SDN) technology plays a critical role in network administration in the future generation of VANET with fifth generation (5G) networks. Regardless of the benefits of VANET, energy economy and traffic control are significant architectural challenges. Accurate and real-time traffic flow prediction (TFP) becomes critical for managing traffic effectively in the VANET. SDN controllers are a critical issue in VANET, which has garnered much interest in recent years. With this objective, this study develops… More >

  • Open Access

    ARTICLE

    Improved STCA Model for Multi-Lane Using Driving Guidance under CVIS

    Xun Li1, Wenzhe Ma1,*, Zhengfan Zhao2, Muhammad Bashir1, Wenjie Wang1, Xiaohua Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 67-92, 2022, DOI:10.32604/cmes.2022.020019

    Abstract In a multi-lane area, the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability. A study on safe lane shifting activity that focuses on threat assessment under real-time knowledge is necessary to enhance smooth vehicle flow. This paper proposed a more comprehensive lane changing guidance rule to investigate the status of surrounding vehicles to accommodate future vehicle-on-road collaborative environments based on these parameters 1) lane change demand and 2) treat assessment function. The collaborative relationships between vehicles are analyzed using a cellular automata model based on their location, velocity, and acceleration. We analyze and examine… More >

Displaying 1-10 on page 1 of 25. Per Page