Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Modeling and Simulation of Valve Cycle in Vein Using an Immersed Finite Element Method

    Xiang Liu1, Liangbo Sun2, Mingzhen Wang3, 4, Bin Li2, Lisheng Liu1, 5, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 153-183, 2020, DOI:10.32604/cmes.2020.08716 - 01 April 2020

    Abstract A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles. Using an immersed finite element method which was modified by a ghost fluid technique, the interaction between the vein and blood was simulated. With an independent solid solver, the contact force between vein tissues was calculated using an adhesive contact method. A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein. Both the opening orifice and blood flow rate agreed with those in the physiology. Low blood shear stress… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, More >

  • Open Access

    ARTICLE

    Shear Strength and Morphological Study of Polyurethane-OMMT Clay Nanocomposite Adhesive Derived from Vegetable Oil-Based Constituents

    Swarnalata Sahoo1,2*, Hemjyoti Kalita1, Smita Mohanty1,2, Sanjay Kumar Nayak1,2

    Journal of Renewable Materials, Vol.6, No.1, pp. 117-125, 2018, DOI:10.7569/JRM.2017.634155

    Abstract In the current work, we have synthesized vegetable oil-based polyurethane-OMMT clay nanocomposite (PUNC) adhesive with the incorporation of different wt% of organically modified nanoclay (1 to 5 wt%) into the biobased polyurethane (PU) matrix through in-situ polymerization process via ultrasonication method. At the initial stage, PU adhesive was prepared using polyol and partially biobased aliphatic isocyanate, wherein polyol was derived from the transesterified castor oil using ethylene glycol. The formation of PU and PUNC adhesive was confirmed using Fourier transform infrared (FTIR) spectroscopy analysis. The tensile strength of PU with different wt% of nanoclay was… More >

  • Open Access

    ARTICLE

    Hydroxymethylfurfural Hardening of Pine Tannin Wood Adhesives

    F.-J. Santiago-Medina1, A. Pizzi1,2,*, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 435-447, 2017, DOI:10.7569/JRM.2017.634166

    Abstract An adhesive based on the reaction of a very fast reacting procyanidin-type condensed tannin, namely purified pine bark tannin, with a biosourced nontoxic and nonvolatile aldehyde derived from the pulp and paper industry, namely hydroxymethylfurfural (HMF), was shown to almost satisfy the relevant standards for bonding wood particleboard. The conditions of pH used are determinant for the result. The oligomers obtained by the reaction and their distribution have been determined by matrix-assisted laser ionization desorption time-of-flight (MALDI-TOF) mass spectrometry. Of the two reactive groups of hydroxymethylfurfural capable of reacting, the furanic aldehyde one and the More >

  • Open Access

    A Highly Water-Resistant Soy-Based Bioadhesive with 1,4-Butanediol Diglycidyl Ether and its Application on Plywood

    Kun Li, Xiaona Li, Jing Luo, Jingjing Li, Qiang Gao*, Jianzhang Li*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 31-38, 2017, DOI:10.7569/JRM.2017.634131

    Abstract The objective of this study was to use soybean meal and 1,4-butanediol diglycidyl ether (BDDE) to develop a highly water-resistant, soy-based bioadhesive for plywood fabrication. The physical properties and performance characteristics of the resulting adhesive, including solid content, viscosity, water resistance, crystallinity, fracture morphology, thermal behavior, and cracks, were evaluated. The proposed adhesive was compared against the traditional soy adhesive with polyamidoamine-epichlorohydrin (PAE). Results showed that adding 8 g of BDDE into the adhesive formulation improved the solid content up to 32.83% and reduced the viscosity to 27340 mPa·s. The wet shear strength of plywood More >

  • Open Access

    ARTICLE

    Chitosan-g-PMMA/Kaolin Bionanocomposites for Use in Bioadhesive Bone-Cement Implants

    Arun Kumar Pradhan1,2*, Prafulla Kumar Sahoo1, Pradeep Kumar Rana2

    Journal of Renewable Materials, Vol.5, No.5, pp. 371-379, 2017, DOI:10.7569/JRM.2017.634129

    Abstract Chitosan grafted with poly(methyl-methacrylate) (PMMA) and adsorbed with kaolin functionalized as bioadhesive was prepared via emulsion polymerization technique and physiochemically characterized as a bone-graft substitute. The so prepared grafted bioactive bone cement (BBC) bionanocomposites (BNCs), chitosan-g-PMMA/kaolin, was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). The water uptake, retention ability and the nanosize particle arrangement in the polymeric BBC-BNCs were studied along with the mechanical and biodegradation properties. These preliminary investigations of the BNCs will open the door for their use in bioadhesive More >

  • Open Access

    ARTICLE

    Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins

    Flávio Pereira1, João Pereira2, Nádia Paiva3, João Ferra3, Jorge Manuel Martins1,4, Fernão D. Magalhães1, and Luísa Carvalho1,4*

    Journal of Renewable Materials, Vol.4, No.1, pp. 41-46, 2016, DOI:10.7569/JRM.2015.634128

    Abstract This work studies the use of soy protein as a natural formaldehyde scavenger in wood particleboard production. The protein is incorporated in two forms: a) as a powder, during the blending process of wood particles with urea-formaldehyde binder resin, and b) as an aqueous solution, added at different times during resin synthesis. Analysis of variance (ANOVA) was used to evaluate the signifi cance level of two effects (amount of added soy and time of addition) on internal bond strength, thickness swelling, and formaldehyde content of the resulting panels. The results showed that soy protein can More >

  • Open Access

    ARTICLE

    Valorization of Tunisian Pomegranate Peel Tannins in Green Adhesives Formulation

    Houda Saad1,2,*, Antonio Pizzi3,4, Bertrand Charrier2, Naceur Ayed1, Karsten Rode5, Fatima Charrier - El Bouhtoury2

    Journal of Renewable Materials, Vol.3, No.1, pp. 34-43, 2015, DOI:10.7569/JRM.2014.634130

    Abstract The possible use of Tunisian pomegranate tannins in wood adhesive formulation was studied for the fi rst time. Colorimetric tests, Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-fl ight (MALDI-TOF) mass spectrometry were used to examine pomegranate tannins. Analysis showed that pomegranate peels are rich in hydrolyzable tannins. The Stiasny number tests showed the low reactivity of pomegranate tannin extract to formaldehyde and thus the diffi culty of using it in wood adhesive formulation. Thermomechanical analysis (TMA) and strength analysis of pomegranate tannin/hexamine-based resin showed weak bonding properties. More >

  • Open Access

    ARTICLE

    Bond Strength of Biodegradable Gelatin-Based Wood Adhesives

    D.N. Dorr, S.D. Frazier, K.M. Hess, L.S. Traeger, W.V. Srubar III*

    Journal of Renewable Materials, Vol.3, No.3, pp. 195-204, 2015, DOI:10.7569/JRM.2015.634108

    Abstract A study of the potential for gelatin-based derivatives to serve as biorenewable, biodegradable adhesives for wood and engineered wood products is presented in this article. The effect of gelatin-to-water weight percent on the mechanical, specifically ultimate breaking (bond) strength, and thermal properties was investigated using tensile testing and differential scanning calorimetry, respectively. The breaking strengths of the gelatin-based adhesives were characterized and compared to four commercially available wood adhesives. The effect of 1–5% tannin addition on the mechanical, thermal, and moisture absorption behavior of the gelatin-based adhesives was also investigated. Results show that the gelatin-based More >

  • Open Access

    ARTICLE

    Formaldehyde-Free Wood Composites from Soybean Protein Adhesive

    Richard C. Ferguson, Sharathkumar K. Mendon, James W. Rawlins*, Shelby F. Thames

    Journal of Renewable Materials, Vol.2, No.3, pp. 166-172, 2014, DOI:10.7569/JRM.2013.634133

    Abstract Commercial particleboards are currently synthesized by blending wood furnish with formaldehyde-based resins and curing them under a combination of heat and pressure. Particleboards manufactured with urea-formaldehyde resin are known to liberate formaldehyde during their service lives. Formaldehyde’s carcinogenicity has prompted the search for environmentally-friendly resins for wood composite manufacture. Soybean protein-based adhesives have been developed as a renewable and formaldehyde-free replacement for urea-formaldehyde resins. Particleboards processed using the soybean protein adhesive matched or exceeded performance criteria of M-2-grade commercial particleboards when evaluated as per American National Standards Institute (ANSI) specifi cations. More >

Displaying 41-50 on page 5 of 64. Per Page