Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (156)
  • Open Access

    ARTICLE

    MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection

    Jia Liu1, Hao Chen1, Hang Gu1, Yushan Pan2,3, Haoran Chen1, Erlin Tian4, Min Huang4, Zuhe Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068162 - 10 November 2025

    Abstract Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning, disaster emergency response, and resource management. However, existing methods face challenges such as spectral similarity between buildings and backgrounds, sensor variations, and insufficient computational efficiency. To address these challenges, this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network (MewCDNet), which integrates the advantages of Convolutional Neural Networks and Transformers, balances computational costs, and achieves high-performance building change detection. The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction, integrates multi-level feature maps through a multi-scale fusion… More >

  • Open Access

    REVIEW

    AI-Powered Digital Twin Frameworks for Smart Grid Optimization and Real-Time Energy Management in Smart Buildings: A Survey

    Saeed Asadi1, Hajar Kazemi Naeini1, Delaram Hassanlou2, Abolhassan Pishahang3, Saeid Aghasoleymani Najafabadi4, Abbas Sharifi5, Mohsen Ahmadi6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1259-1301, 2025, DOI:10.32604/cmes.2025.070528 - 26 November 2025

    Abstract The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control.… More >

  • Open Access

    REVIEW

    Benefits of Artificial Intelligence for Achieving Durable and Sustainable Building Design

    Abdullah Alariyan1, Rawand A. Mohammed Amin2, Ameen Mokhles Youns3, Mahmoud Alhashash4, Favzi Ghreivati5, Ahed Habib6,*, Maan Habib7

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1387-1410, 2025, DOI:10.32604/sdhm.2025.069821 - 17 November 2025

    Abstract Artificial intelligence (AI) is transforming the building and construction sector, enabling enhanced design strategies for achieving durable and sustainable structures. Traditional methods of design and construction often struggle to adequately predict building longevity, optimize material use, and maintain sustainability throughout a building’s lifecycle. AI technologies, including machine learning, deep learning, and digital twins, present advanced capabilities to overcome these limitations by providing precise predictive analytics, real-time monitoring, and proactive maintenance solutions. This study explores the benefits of integrating AI into building design and construction processes, highlighting key advantages such as improved durability, optimized resource efficiency,… More >

  • Open Access

    REVIEW

    Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review

    Kavita Bodke1,*, Sunil Bhirud1, Keshav Kashinath Sangle2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1547-1562, 2025, DOI:10.32604/sdhm.2025.069239 - 17 November 2025

    Abstract Structural Health Monitoring (SHM) systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity. There is a need for more efficient techniques to detect defects, as traditional methods are often prone to human error, and this issue is also addressed through image processing (IP). In addition to IP, automated, accurate, and real- time detection of structural defects, such as cracks, corrosion, and material degradation that conventional inspection techniques may miss, is made possible by Artificial Intelligence (AI) technologies like Machine Learning (ML) and Deep Learning… More > Graphic Abstract

    Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review

  • Open Access

    ARTICLE

    Segmentation of Building Surface Cracks by Incorporating Attention Mechanism and Dilation-Wise Residual

    Yating Xu1, Mansheng Xiao1,*, Mengxing Gao1, Zhenzhen Liu1, Zeyu Xiao2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1635-1656, 2025, DOI:10.32604/sdhm.2025.068822 - 17 November 2025

    Abstract During the operation, maintenance and upkeep of concrete buildings, surface cracks are often regarded as important warning signs of potential damage. Their precise segmentation plays a key role in assessing the health of a building. Traditional manual inspection is subjective, inefficient and has safety hazards. In contrast, current mainstream computer vision–based crack segmentation methods still suffer from missed detections, false detections, and segmentation discontinuities. These problems are particularly evident when dealing with small cracks, complex backgrounds, and blurred boundaries. For this reason, this paper proposes a lightweight building surface crack segmentation method, HL-YOLO, based on… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Thermal Storage Energy in a Building with Various Pipeline Design under Floor—Case Study

    Rafah H. Zaidan*, Najim A. Jasim

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025

    Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >

  • Open Access

    ARTICLE

    Coordinated Scheduling of Electric-Hydrogen-Heat Trigeneration System for Low-Carbon Building Based on Improved Reinforcement Learning

    Jiayun Ding, Bin Chen*, Yutong Lei, Wei Zhang

    Energy Engineering, Vol.122, No.11, pp. 4561-4577, 2025, DOI:10.32604/ee.2025.067574 - 27 October 2025

    Abstract In the field of low-carbon building systems, the combination of renewable energy and hydrogen energy systems is gradually gaining prominence. However, the uncertainty of supply and demand and the multi-energy flow coupling characteristics of this system pose challenges for its optimized scheduling. In light of this, this study focuses on electro-thermal-hydrogen trigeneration systems, first modelling the system’s scheduling optimization problem as a Markov decision process, thereby transforming it into a sequential decision problem. Based on this, this paper proposes a reinforcement learning algorithm based on deep deterministic policy gradient improvement, aiming to minimize system operating… More >

  • Open Access

    ARTICLE

    Impact of Building Materials for the Facade on Energy Consumption and Carbon Emissions (Case Study of Residential Buildings in Tehran)

    Amir Sina Darabi*, Mehdi Ravanshadnia

    Energy Engineering, Vol.122, No.9, pp. 3753-3792, 2025, DOI:10.32604/ee.2025.065241 - 26 August 2025

    Abstract Although currently, a large part of the existing buildings is considered inefficient in terms of energy, the ability to save energy consumption up to 80% has been proven in residential and commercial buildings. Also, carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60% of global warming. The facade of the building, as the main intermediary between the interior and exterior spaces, plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents. In this research, 715 different scenarios were defined… More >

  • Open Access

    ARTICLE

    Building the profession of psychological counselling in Ethiopia—achievements, challenges, and future directions

    Adane W. Jarsso1,2, Elron S. Fouten1, Megan M. Campbell1,*

    Journal of Psychology in Africa, Vol.35, No.2, pp. 277-285, 2025, DOI:10.32604/jpa.2025.065771 - 30 June 2025

    Abstract Mental healthcare in Ethiopia is underutilized due to a lack of resources and skilled practitioners. Psychological counselling offers unique intervention possibilities because of its focus on a wide range of mental health and social justice issues. This literature review tracks the historical development of the profession of psychological counselling in Ethiopia to establish what has been achieved to date and the development challenges. Key achievements include recognition of the profession by the Ministry of Education, growing public awareness, and increasing capacity of practitioners skilled in psychological counselling. Challenges include limited contextually relevant training, poor representation More >

  • Open Access

    ARTICLE

    Occupancy Based Building Energy Analysis Using Discrete Event Simulation

    Rupa Das1, Roseline Mostafa2, Bhaskaran Gopalakrishnan2,*

    Energy Engineering, Vol.122, No.7, pp. 2931-2956, 2025, DOI:10.32604/ee.2025.064887 - 27 June 2025

    Abstract Highly energy-efficient buildings have generated remarkable interest over the last few years. There is a need for simulation based effective control systems for efficient usage of electrical and fossil fuel driven devices, as they contribute to energy-efficient buildings and assist in gaining flexibility for the human occupancy-based energy loads. In this context, the integrated energy profile of a building can be ascertained by effective research approaches, as this knowledge would be beneficial to understand the demographics with respect to human occupancy and activities, as well as estimate varying energy consumption over time. Utility data from… More > Graphic Abstract

    Occupancy Based Building Energy Analysis Using Discrete Event Simulation

Displaying 1-10 on page 1 of 156. Per Page